Skip to main content
Log in

Low pressure and low temperature gallium arsenide homoepitaxy employing in-situ generated arsine

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Removed from the deposition region, an upstream hydrogen microwave plasma etches a surface of solid arsenic located downstream to generate arsenic hydrides. The latter are used with trimethylgallium (TMGa) to achieve low temperature (400–490° C) and low pressure (750 mTorr) homoepitaxial GaAs films. No active or afterglow plasma exists in the growth region. The homoepitaxial growth activation energy of 62 kcal/mole is consistent with the heterogeneous decomposition of TMGa in the absence of arsine. Precursor V-III ratios as low as 0.25 are used to achieve homoepitaxial films, but with high levels of carbon impurities (1019 to mid 1020 cm−3). Carbon incorporation increases at low V-III ratios (0.25 to 0.5) for increasing temperatures with an activation energy of 23 kcal/mole. As the V-III ratios are increased above 1.0, the carbon incorporation activation energy decreases slightly to 15 kcal/mole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Reep and S. K. Ghandi, J. Electrochem. Soc.130, 675 (1983).

    Article  CAS  Google Scholar 

  2. M. Uneta, Y. Watanabe and Y. Ohmachi, J. Cryst. Growth,110, 576 (1990).

    Article  Google Scholar 

  3. S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. D. Danner and H. C. Lee, J. Cryst. Growth77, 188 (1986).

    Article  CAS  Google Scholar 

  4. T. R. Omstead, A. V. Annapragada and K. F. Jensen, Appl. Phys. Lett.57, 2543 (1990).

    Article  CAS  Google Scholar 

  5. N. M. Johnson, R. A. Street, J. Walker and K. Winer, J. Non- Cryst. Solid114, 169 (1989).

    Article  CAS  Google Scholar 

  6. J. Marinace, IBM Research Report No. 11705. See also G. J. Collins, J. R. McNeil, and Z. Yu, U.S. Patent No. 4,952,294, issued 28 Aug. 1990.

  7. M. Naitoh, T. Soga, T. Jimbo, and M. Umeno, J. Cryst. Growth93, 52 (1988).

    Article  CAS  Google Scholar 

  8. F. W. Mclafferty and D. B. Stauffer, The Wiley/NBS Regis- try of Mass Spectral Data, (John Wiley and Sons, New York, NY, 1988) Vol. 1.

    Google Scholar 

  9. W. L. Jolly, L. B. Anderson, and R. T. Beltrami, J. Am. Chem. Soc.79, 2443 (1957).

    Article  CAS  Google Scholar 

  10. D. Joy, D. Newbury, and D. Davidson, J. Appl. Phys.53, R81 (1982).

    Article  CAS  Google Scholar 

  11. K. Tamaru, J. Chem. Phys.,59, 777 (1955).

    Article  CAS  Google Scholar 

  12. A. D. Reed, S. S. Bose and G. E. Stillman, Appl. Phys. Lett.,54, 1262 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pihlstrom, B.G., Sheng, T.Y., Thompson, L.R. et al. Low pressure and low temperature gallium arsenide homoepitaxy employing in-situ generated arsine. J. Electron. Mater. 21, 277–279 (1992). https://doi.org/10.1007/BF02660454

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660454

Key words

Navigation