Skip to main content
Log in

Raman characterization of hydroxyl in fused silica and thermally grown SiO2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We developed Raman spectroscopy to characterize the hydroxyl (OH) solubility in fused silica and thermally grown steam SiO2 from 695 to 1000‡C and 1–10 atm steam pressure. The technique was extended to measure the OH diffusion profiles in bulk v-SiO2, and the derived diffusion coefficients supplement those published in the literature. Fused silicas processed with higner fictive temperatures display larger initial OH solubilities which decrease with time, but saturations at temperatures as low as 600‡C remove much of the prior thermal history as the glass structurally relaxes. The OH solubility appears to be proportional to the square root of external steam pressure; however, the quasiequilibrium temperature dependence is unresolved. The behavior of OH in fused silica and the thermally grown oxide is very similar when the two materials are identically processed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hetherington and K.H. Jack, Phys. Chem. Glasses3, 129 (1962).

    CAS  Google Scholar 

  2. R. Bruckner, J. Non-Cryst Solids5, 123, 177 (1970).

    Article  Google Scholar 

  3. R.H. Doremus, ‘ Glass Science,’ (Wiley, New York, 1973).

    Google Scholar 

  4. A.J. Moulson and J.P. Roberts, Trans. Br. Ceram. Soc.59, 388 (1960).

    CAS  Google Scholar 

  5. G.W. Stephenson and K.H. Jack, Trans. Br. Ceram. Soc.59, 397 (1960).

    Google Scholar 

  6. G.J. Roberts and J.P. Roberts, Phys. Chem. Glasses5, 26 (1964).

    CAS  Google Scholar 

  7. G.J. Roberts and J.P. Roberts, Phys. Chem. Glasses7, 82 (1966).

    CAS  Google Scholar 

  8. I. Burn and J.P. Roberts, Phys. Chem. Glasses11, 106 (1970).

    CAS  Google Scholar 

  9. B.T. Bell, G. Hetherington, and K.H. Jack, Phys. Chem. Glasses3.141 (1962).

    Google Scholar 

  10. G.H.A.M. van der Steen and H. van den Boom, J. Non-Cryst Solids23, 279 (1977).

    Article  Google Scholar 

  11. CM. Hartwig, J. Chem. Phys.66, 227 (1977).

    Article  CAS  Google Scholar 

  12. A.G. Revesz, J. Electrochem. Soc.126, 122 (1979).

    Article  CAS  Google Scholar 

  13. K.H. Beckmann and N.J. Harrick, J. Electrochem. Soc.118, 614 (1971).

    Article  CAS  Google Scholar 

  14. P.J. Burkhard!, J. Electrochem. Soc.114, 196 (1967).

    Article  Google Scholar 

  15. D.J. Breed and R.H. Doremus, J. Phys. Chem.80, 2471 (1976).

    Article  CAS  Google Scholar 

  16. D.R. Wolters, J. Electrochem. Soc.127, 2072 (1980).

    Article  CAS  Google Scholar 

  17. R.H. Stolen and G.E. Walrafen, J. Chem. Phys.64, 2623 (1976).

    Article  CAS  Google Scholar 

  18. F.L. Galeener and R.H. Geils, in ‘ Structure of Non-Crystalline Materials,’ ed. P.H. Gaskell (Taylor & Francis, London, 1977) p. 223.

    Google Scholar 

  19. J.C. Mikkelsen, Jr. and F.L. Galeener, Appl. Phys. Lett.37, 712 (1980).

    Article  CAS  Google Scholar 

  20. F.L. Galeener and J.C. Mikkelsen, Jr., Solid State Commun, (in press).

  21. ‘ International Critical Tables of Numerical Data: Physics, Chemistry, and Technology’ (McGraw-Hill, New York, 1926) Vol. 3, p. 233.

  22. Ref. 19 in L.E. Katz and B.F. Howells, Jr., J. Electrochem. Soc.126, 1822 (1979).

    Article  CAS  Google Scholar 

  23. Samples were obtained from Amersil, Inc., Sayersville, N.J.

  24. J.C. Mikkelsen, Jr. and F.L. Galeener, J. Non-Cryst. Solids37, 71 (1980).

    Article  CAS  Google Scholar 

  25. F.L. Galeener and G. Lucovsky, Phys. Rev. Lett.37, 1474 (1976).

    Article  CAS  Google Scholar 

  26. G.E. Walrafen, private communication.

  27. F.L. Galeener and J.C. Mikkelsen, Jr., Appl. Phys. Lett., in press.

  28. C. Matano, Jap. J. Phys.8, 109 (1933).

    CAS  Google Scholar 

  29. R.H. Doremus, in ‘ Reactivity of Solids,’ ed. J.W. Mitchell, R.C. DeVries, R.W. Roberts, and P. Cannon (John Wiley & Sons, New York, 1969) p. 667.

    Google Scholar 

  30. V.J. Fratello, J.F. Hayes, and D. Turnbull, J. Appl. Phys.51, 4718 (1980).

    Article  CAS  Google Scholar 

  31. N.C. Lias, E.E. Grudenski, E.D. Kolb, and R.A. Laudise, J. Crystal Growth18, 1 (1973).

    Article  CAS  Google Scholar 

  32. G.E. Walrafen and S.R. Samanta, J. Chem. Phys.69, 493 (1978).

    Article  CAS  Google Scholar 

  33. G.E. Walrafen and J.P. Luongo, Spex Speaker10, 1 (1975).

    Google Scholar 

  34. S.W. Ing, Jr., R.E. Morrison, and J.E. Sandor, J. Electrochem. Soc.109, 221 (1962).

    Article  CAS  Google Scholar 

  35. B.E. Deal and A.S. Grove, J. Appl. Phys.36, 3770 (1965).

    Article  CAS  Google Scholar 

  36. J.C. Mikkelsen, Jr., 23rd Electronic Materials Conference, Santa Barbara, CA, 1981.

  37. J.R. Ligenza, J. Electrochem. Soc.109, 73 (1962).

    Article  CAS  Google Scholar 

  38. F.M. Ernsberger, J. Amer. Ceram. Soc.60, 91 (1980).

    Article  Google Scholar 

  39. F.M. Ernsberger, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikkelsen, J.C., Galeener, F.L. & Mosby, W.J. Raman characterization of hydroxyl in fused silica and thermally grown SiO2 . J. Electron. Mater. 10, 631–651 (1981). https://doi.org/10.1007/BF02660125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660125

Key words

Navigation