, Volume 44, Issue 2, pp 134–142 | Cite as

Sequence and characterization of twoHSP70 genes in the colonial protochordateBotryllus schlosseri

  • Melinda B. Fagan
  • Irving L. Weissman
Original Paper


Two genes belonging to the heat shock protein 70 gene family have been cloned from the colonial protochordateBotryllus schlosseri. The two intronless genes(HSP70.1 andHSP70.2) exhibit 93.6% sequence identity within the predicted coding region, and 83.3% and 81.7% sequence identity in the 5′ and 3′ flanking regions, respectively. The predicted amino acid sequences are 95% identical and contain several signatures characteristic of cytoplasmic eukaryoticHSP70 genes (Gupta et al. 1994; Rensing and Maier 1994). Northern blotting and sequence analysis suggest that both genes are heat-inducible merebees of theHSP70 gene family. Given these characteristics,HSP70.1 andHSP70.2 appear to be good candidates for protochordate homologues of the major histocompatibility complex-linkedHSP70 genes of human, mouse, and rat (Milner and Campbell 1990; Walter et al. 1994). Further experiments to determine whether there is functional evidence for such similarity are in progress.


Major Histocompatibility Complex Sodium Dodecyl Sulfate HSP70 Gene Nurse Shark HSP70 Gene Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas, A. K., Lichtman, A. H., and Pober, J. S.Cellular and Molecular Immunology, 2nd edn, W. B. Saunders Co., Philadelphia. 1994Google Scholar
  2. Abbot, D. P. and Newberry, A. T.Intertidal Invertebrates of California, Stanford University Press, Stanford, CA 1980Google Scholar
  3. Ahmad, S., Ahuja, R., Venner, T. J., and Gupta, R. S. Identification of a protein altered in mutants resistant to microtubule inhibitors as a member of the major heat shock protein (hsp70) family.Mol Cell Biol 10: 5160–5165, 1990PubMedGoogle Scholar
  4. Ansubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl K.Current Protocols in Molecular Biology, Vol 2, Greene Publishing Associates, Brooklyn, NY 1987Google Scholar
  5. Bancroft, F. W. Variation and fusion of colonies in compound ascidians.Proc Calif Aead Sci 3: 137–186, 1903Google Scholar
  6. Bartl, S. and Weissman, I. L. Isolation and characterization of major histocompatibility complex class IIB genes from the nurse shark.Proc Natl Acad Sci USA 91: 262–266, 1994PubMedCrossRefGoogle Scholar
  7. Bienz, M.Xenopus HSP70 genes are constitutively expressed in injected oocytes.EMBO J 3: 2477–2483, 1984PubMedGoogle Scholar
  8. Boorstein, W. R. and Craig, E. A. Molecular evolution of theHSP70 multigene family.J Biol Chem 256: 18912–18921, 1990Google Scholar
  9. Boyd, H. C., Weissman, I. L., and Saito, Y. Morphologic and genetic verification that MontereyBotryllus and Woods HoleBotryllus are the same species.Biol Bull 178: 239–250, 1990CrossRefGoogle Scholar
  10. Cameron, P. U., Tabarias, H. A., Pulendran, B., Robinson, W., and Dawkins, R. L. Conservation of the central MHC genome: PFGE mapping and RFLP analysis of complement, HSP70, and TNF genes in the goat.Immunogenetics 31: 253–264, 1990PubMedCrossRefGoogle Scholar
  11. Cowen, R.History of Life, Blackwell Scientific Publications, Cambridge. 470pp. 1990Google Scholar
  12. Dang, C. V. and Lee, W. M. F. Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins.J Biol Chem 264: 18019–18023, 1989PubMedGoogle Scholar
  13. DeLuce-Flaherty, C., and McKay, D. B. Nucleotide sequence of the cDNA of a bovine 70 kilodalton heat shock cognate protein.Nucleic Acids Res 18: 5569, 1991CrossRefGoogle Scholar
  14. DeNagel, D. C. and Pierce, S. K. A case for chaperones in antigen processing.Immunol Today 13: 86–89, 1992PubMedCrossRefGoogle Scholar
  15. Dezeure, F., Vaiman, M., and Chardon, P. Characterization of a polymorphic heat shock protein 70 gene in swine outside the SLA major histocompatibility complex.Biochim Biophy Acta 1174: 17–26, 1993Google Scholar
  16. Domanico, S. Z., Dahlseid, J. N., Green, J. M., and Pierce, S. K. Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family.Mol Cell Bio 13: 3598–3610, 1993Google Scholar
  17. Dworniczak, B. and Mirault, M.-E. Structure and expression of a human gene coding for a 71 kd heat shock ‘cognate” protein.Nucleic Acids Res 15: 5181–5197, 1987PubMedCrossRefGoogle Scholar
  18. Felsenstein, J.PHYLIP 3.5c Analysis Package, University of Washington, Seattle, WA, 1993Google Scholar
  19. Giebel, L. B., Dworniczak, B. P., and Bautz, E. K. F. Developmental regulation of a constitutively expressed mouse messenger RNA encoding a 72-kDA heat shock-like protein.Dev Bio 125: 200–207, 1988CrossRefGoogle Scholar
  20. Gething, M.-J. and Sambrook, J. Protein folding in the cell.Nature 355: 33–45, 1992PubMedCrossRefGoogle Scholar
  21. Greenberg, A. S., Steiner, L., Kasahara, M., and Flajnik, M. F. Isolation of a shark immunoglobulin light chain cDNA clone encoding a protein resembling mammalian kappa light chains: implications for the evolution of light chains.Proc Natl Acad Sci USA 90: 10603–10607, 1993PubMedCrossRefGoogle Scholar
  22. Grosberg, R. K. The evolution of allorecognition specificity in colonial invertebrates.Quarterly Rev Biol 63: 377–412, 1988CrossRefGoogle Scholar
  23. Grosz, M. D., Womack, J. E., and Skow, L. C. Syntenic conservation ofHSP70 genes in cattle and humans.Genomics 14: 863–868, 1992PubMedCrossRefGoogle Scholar
  24. Grosz, M. D., Massey, V. K., and Skow, L. C. Direct submission to GenEMBL database. AC P34933, 1994Google Scholar
  25. Gunther, E. and Walter, L. Genetic aspects of theHSP70 multigene family in vertebrates.Experientia 50: 987–1001, 1994PubMedCrossRefGoogle Scholar
  26. Gupta, R. S., Aitken, K., Falah, M., Singh, B. Cloning ofGiardia lamblia heat shock proteinHSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum.Proc Natl Acad Sci USA 91: 2895–2899, 1994PubMedCrossRefGoogle Scholar
  27. Hendrick, J. P. and Hartl, F-U. Molecular chaperone functions of heat-shock proteins.Annu Rev Biochem 62: 349–384, 1993PubMedCrossRefGoogle Scholar
  28. Hunt, C. and Calderwood, S. Characterization and sequence of a mouseHSP70 gene and its expression in mouse cell lines.Gene 87: 199–204, 1990PubMedCrossRefGoogle Scholar
  29. Hunt, C. and Morimoto, R. I. Conserved features of eukaryoticHSP70 genes revealed by comparison with the nucleotide sequence of humanHSP70.Proc Natl Acad Sci USA 82: 6455–6459, 1985PubMedCrossRefGoogle Scholar
  30. Ingolia, T. D., Craig, E. A., and McCarthy, B. J. Sequence of three copies of the gene for the majorDrosophila heat shock induced protein and their flanking regions.Cell 21: 669–679, 1980PubMedCrossRefGoogle Scholar
  31. Karch, F., Toeroek, I., and Tissieres, A. Extensive regions of homology in front of the two hsp70 heat shock variant genes inDrosophila melanogaster.J Mol Biol 148: 219–230, 1981PubMedCrossRefGoogle Scholar
  32. Kasahara, M., Vasquez, M., Sato, K., McKinney, E. C., and Flajnik, M. F. Evolution of the major histocompatibility complex: isolation of class II A cDNA clones from cartilaginous fish.Proc Natl Acad Sci USA 89: 6688–6692, 1992PubMedCrossRefGoogle Scholar
  33. Kasahara, M., McKinney, E. C., Flajnik, M. F., and Ishibashi, T. The evolutionary origin of the major histocompatibility complex: polymorphism of class II A chain genes in the cartilaginous fish.Eur J Immunol 23: 2160–2165, 1993PubMedCrossRefGoogle Scholar
  34. Kaufmann, S. H. E. Heat shock proteins and the immune response.Immunol Today 11: 129–136, 1990PubMedCrossRefGoogle Scholar
  35. Kuby, J.Immunology, W. H. Freeman and Co., New York, 1992Google Scholar
  36. Leung, T. K. C., Rajendran, M. Y., Monfries, C., Hall, C., and Lim, L. The human heat-shock protein family: expression of a novel heat-inducible HSP70 (HSP70B′) and isolation of its cDNA and genomic DNA.Biochem J 267: 125–132, 1990PubMedGoogle Scholar
  37. Lindquist, S. The heat-shock response.Annu Rev Biochem 55: 1151–1191, 1986PubMedCrossRefGoogle Scholar
  38. Longo, F. M., Wang, S., Narasimhan, P., Zhang, J. S., Chen, J., Massa, S. M., and Sharp, F. R. cDNA cloning and expression of a stress-inducible rat hsp70 in normal and injured rat brain.J Neurosci Res 36: 325–335, 1993PubMedCrossRefGoogle Scholar
  39. Matsumoto, M. and Fujimoto, H. Cloning of a HSP70-related gene expressed in mouse spermatids.Biochem Biophys Res Comm 166: 43–49, 1990PubMedCrossRefGoogle Scholar
  40. Milner, C. M. and Campbell, R. D. Structure and expression of the three MHC-linked HSP70 genes.Immunogenetics 32: 242–251, 1990PubMedCrossRefGoogle Scholar
  41. Morimoto, R. I., Hunt, C., Huang, S.-Y., Berg, K. L., and Banerji, S. S. Organization, nucleotide sequence, and transcription of the chicken HSP70 gene.J Biol Chem 261: 12692–12699, 1986PubMedGoogle Scholar
  42. Nunes, M., Yerle, M., Dezeure, F., Gellin, J., Chardon, P., and Vaiman, M. Isolation of four HSP70 genes in the pig and localization on chromosomes 7 and 14.Mammalian Genome 4: 247–251, 1993PubMedCrossRefGoogle Scholar
  43. Oka, H. and Watanabe, H. Colony specificity in compound ascidians as tested by fusion experiments.Proc Jap Acad 33: 657–659, 1957Google Scholar
  44. Peelman, L. J., Van de Weghe, A. R., Coppieters, W. R., Van Zeveren, A. J., and Bouquet, Y. H. Complete nucleotide sequence of a porcineHSP70 gene.Immunogenetics 35: 286–289, 1992PubMedCrossRefGoogle Scholar
  45. Perkins, L. A., Doctor, J. S., Zhang, K., Stinson, L., Perrimon, N., and Craig, E. A. Molecular and developmental characterization of the heat shock cognate 4 gene of Drosophila melanogaster.Mol Cell Biol 10: 3232–3238, 1990PubMedGoogle Scholar
  46. Rinkevich B. and Weissman I. L. Retreat growth in the ascidianBotryllus schlosseri: a consequence of nonself recognition.In R. K. Grosberg, D. Hedgecock’ and K. Nelson (eds.):Invertebrate Historecognition, Plenum Publishing, New York, NY 1988Google Scholar
  47. Rinkevich B. and Weissman, I. L. Interpopulational allogeneic reactions in the colonial protochordate Botryllus schlosseri.Int Immunol 3: 1265–1272, 1991PubMedCrossRefGoogle Scholar
  48. Rensing, S. A. and Maier, U.-G. Phylogenetic analysis of the stress-70 protien family.J Mol Evol 39: 80–86, 1994PubMedCrossRefGoogle Scholar
  49. Rubin, D. M., Mehta, A. D., Zhu, J., Shoham, S., Chen, X., Wells, Q. R., and Palter, K. B. Genomic structure and sequence analysis ofDrosophila melanogaster HSC70 genes.Gene 128: 155–163, 1993PubMedCrossRefGoogle Scholar
  50. Sabbadin, A. Formal genetics of ascidians.Amer Zool 22: 765–773, 1982Google Scholar
  51. Salter-Cid, L., Kasahara, M., and Flajnik, M. F.,HSP70 genes are linked to theXenopus major histocompatibility complex.Immunogenetics 39: 1–7, 1994PubMedCrossRefGoogle Scholar
  52. Sambrook, J., Fritsch, E. F., and Maniatas, T.Molecular Cloning: A Laboratory Mannual, Cold Spring Harbor Laboratory Cold Spring Harbor, 1989Google Scholar
  53. Scofield, V. L., Schlumpberger, J. M., West, L. A., and Weissman, I. L. Protochordate allorecognition is controlled by a MHC-like gene system.Nature 295: 499–502, 1982PubMedCrossRefGoogle Scholar
  54. Scofield, V. L. and Nagashima, L. S. Morphology and genetics of rejection reactions between oozooids from the tanicate Botryllus schlosseri.Biol Bull 165: 733–744, 1982CrossRefGoogle Scholar
  55. Sconzo, G., Scardina, G., and Ferraro, M. G. Characterization of a new member of the sea urchin Paracentrotus lividus HSP70 gene family and its expression.Gene 121: 353–358, 1992PubMedCrossRefGoogle Scholar
  56. Slater, M. R. and Craig, E. A. The SSA1 and SSA2 genes of the yeast Saccharomyces ceravisiae.Nucleic Acids Res 17: 805–806, 1989PubMedCrossRefGoogle Scholar
  57. Snoek, M., Jansen, M., Olavesen, M. G., Campbell, R. D., Teuscher, C., and van Vugt, H. Three HSP70 genes are located in the C-4-H-2D region: possible candidates for the Orch-1 locus.Genomics 15: 350–356, 1993PubMedCrossRefGoogle Scholar
  58. Sorger, P. K. and Pelham, H. R. B. Cloning and expression of a gene encoding hsc73, the major hsp70-like protein in unstressed rat cells.EMBO J 6: 993–998, 1987PubMedGoogle Scholar
  59. Southern, E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis.J Mol Biol 98: 503–517, 1975PubMedCrossRefGoogle Scholar
  60. Srivastava, P. K., Udono, H., Blachere, N. E., and Li, Z. Heat shock proteins transfer peptides during antigen processing and CTL priming.Immunogenetics 39: 93–98, 1994PubMedCrossRefGoogle Scholar
  61. Swofford, D. L.PAUP-Phylogenetic Analysis Using Parsimony,Version 3.1.1, Washington DC. 1994Google Scholar
  62. Tanaka, K. and Watanabe, H. Allogeneic inhibition in a compound ascidian, Botryllus primigenus Oka. I. Processes and features of “nonfusion” reaction.Cell Immunol 7: 410–426, 1973PubMedCrossRefGoogle Scholar
  63. Udono, H. and Srivastava, P. K. Heat shock protein 70-associated peptides elicit specific cancer immunity.J Exp Med 178: 1391–1396, 1993PubMedCrossRefGoogle Scholar
  64. Walter, L., Rauh, F., and Gunther, E. Comparative analysis of the three major histocompatibility complex-linked heat shock protein 70 (HSP70) genes of the rat.lmmunogenetics 40: 325–330, 1994CrossRefGoogle Scholar
  65. Weissman, I. L., Saito, Y., and Rinkevich, B. Allorecognition histocompatibility in a protochordate species: is the relationship to the MHC semantic or structural?Immunol Rev 113: 227–241, 1990PubMedCrossRefGoogle Scholar
  66. Wisniewski, J., Kordula, T., and Krawczyk, Z. Isolation and nucleotide sequence analysis of the rat testis-specific major heat-shock protein (HSP70)-related gene.Biochim Biophys Acta 1048: 93–99, 1990PubMedGoogle Scholar
  67. Zafarullah, M., Wisniewski, J., Shworak, N. W., Schieman, S., Misra, S., and Gedamu, L. Molecular cloning and characterization of a constitutively expressed heat-shock-cognate hsc71 gene from a rainbow trout.Eur J Biochem 204: 893–900, 1992PubMedCrossRefGoogle Scholar
  68. Zakeri, Z. F., Wogemuth, D. J., and Hunt, C. R. Identification and sequence analysis of a new member of the mouseHSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line.Mol Cell Biol 8: 2925–2932, 1988PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Melinda B. Fagan
    • 1
  • Irving L. Weissman
    • 1
  1. 1.Department of Pathology, Stanford University Medical CenterStanford UniversityStanfordUSA

Personalised recommendations