Skip to main content
Log in

Interface interactions during fabrication of aluminum alloy-alumina fiber composites

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The feasibility of fabricating fiber-reinforced aluminum alloys by addition of discontinuous fibers to vigorously agitated, partially solid metal slurries was investigated. In the first phase of the program, reported herein, emphasis was placed on the study of interface interactions between polycrystalline A12O3 fibers and Al-2 to 8 pct Mg, Al-4.5 pct Cu and Al-4.5 pct Cu-1 to 2 pct Mg alloys. In general, it was observed that the incorporation of fibers could be readily achieved by this technique, and that fibers appeared wetted after a few minutes of contact with the melt. The composites produced exhibited an intimate, void free bond between the constituents. In addition, a region of significantly altered microstructure resulted from accumulation of oxide and/or aluminate particles which either formed within the melt and were attached to the moving fibers, or used the fiber surface as a substrate to grow on. Microscopic examination of this interaction zone and thermodynamic considerations indicate that it consists of fine α-Al2O3, aluminates, oxides of the alloying elements, and probably some intermetallic compounds. For example, it is shown that a stable MgAl2O4 spinel forms at the interface of A12O3 fibers and Al-Mg alloys. Examination of composite specimens fractured under tension indicated that the interfaces produced were strong enough to permit the transfer of loads at strengths in the order of 250 to 350 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Ebert and P. Kennard-Wright:Composite Materials, 1st ed., vol. 1, p. 31, Academic Press, New York, 1974.

    Google Scholar 

  2. A. G. Metcalfe and M. J. Klein:Composite Materials, 1st ed., vol. 1, p. 125. Academic Press, New York, 1974.

    Google Scholar 

  3. W. H. Sutton:Whisker Technology, 1st ed., p. 273, Wiley Interscience, N. Y., 1970.

    Google Scholar 

  4. A. P. Levitt:Whisker Technology, 1st ed., p. 245. Wiley Interscience, N. Y., 1970

    Google Scholar 

  5. R. L. Mehan:Metal Matrix Composites, p. 29, STP 438, ASTM, 1968.

  6. M. J. Moore, E. Feingold and W. H. Sutton:Interfaces in Composites, p. 90, STP 452, ASTM, Philadelphia, Penn., 1969.

    Google Scholar 

  7. R. L. Mehan:J. Compos. Mater., 1970, vol. 4, p. 90.

    CAS  Google Scholar 

  8. A. K. Dhingra and W. H. Krueger:Fiber FP, Continuous Alumina Yam, Report by E. 1. Dupont de Nemours and Co., Inc., Wilmington, Del., 1974.

    Google Scholar 

  9. K. M. Prewo: Report R77-912 245-3, Contract N00014-76-C-0035, United Technologies, East Hartford, Conn., May, 1977.

  10. D. T. Live and P. Murray:Plansee Proc, 2nd Seminar, (Reutte, Tyrol, 1955), pp. 375–404, 1956.

  11. R. D. Carnahan, T. L. Johnson and C. H. Li:J. Amer. Ceram. Soc., 1958, vol. 41, pp. 343–47.

    Article  CAS  Google Scholar 

  12. K. Prabriputaloong and M. R. Piggott:Surface Sci., 1974, vol. 44, pp. 585–97.

    Article  CAS  Google Scholar 

  13. M. Nicholas:J. Mater. Sci., 1968, vol. 3, pp. 571–76.

    Article  CAS  Google Scholar 

  14. S. M. Wolf, A. P. Levitt and J. Brown:Chem, Eng. Progr., 1966, vol. 62, pp. 74–78.

    CAS  Google Scholar 

  15. J. A. Champion, B. J. Keene and J. M. Sillwood:J. Mater. Sci., 1969, vol. 4, pp. 39–49.

    Article  CAS  Google Scholar 

  16. J. Brennanand, J. A. Pask:J. Amer. Ceram. Soc., 1968, vol. 51, pp. 569–73.

    Article  Google Scholar 

  17. R. E. Tressler:Composite Materials, 1st ed., vol. 1, p. 285, Academic Press, New York, 1974.

    Google Scholar 

  18. W. A. Weyl: Proc. No. 46, p. 506, ASTM, 1946.

  19. G. Katz:Thin Solid Films, 1976, vol. 33, pp. 99–105.

    Article  CAS  Google Scholar 

  20. J. G. Lindsay, W. T. Bakker and E. W. Dewig:J. Amer. Ceram. Soc., 1964, vol. 47, pp. 90–94.

    Article  CAS  Google Scholar 

  21. J. J. Comer, N. C. Tombs and J. F. Fitzgerald:J. Amer. Ceram. Soc., 1966, vol. 49, pp. 237–40.

    Article  CAS  Google Scholar 

  22. M. W. Shumate:Interactions of Molten Aluminum with Phosphate Bonded A1 2O3 Refractories M. S. Thesis, University of Illinois, Urbana, Ill., 1977.

    Google Scholar 

  23. A. Sato and R. Mehrabian:Met. Trans. B, 1976, vol. 7B, pp. 443–51.

    Article  CAS  Google Scholar 

  24. K. T. Jacob and C. B. Alcock:J. Amer. Ceram. Soc., 1975, vol. 58, pp. 192–95.

    Article  CAS  Google Scholar 

  25. O. Kubaschewski, E. LI. Evans and C. B. Alcock:Metallurgical Thermochemistry, 4th ed., Pergamon Press, New York, 1967.

    Google Scholar 

  26. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley:Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, Ohio, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, C.G., Abbaschian, G.J. & Mehrabian, R. Interface interactions during fabrication of aluminum alloy-alumina fiber composites. Metall Trans A 9, 697–711 (1978). https://doi.org/10.1007/BF02659927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659927

Keywords

Navigation