Advertisement

Metallurgical Transactions A

, Volume 9, Issue 5, pp 681–689 | Cite as

Microstructure and fracture of 52100 steel

  • Kozo Nakazawa
  • George Krauss
Mechanical Behavior

Abstract

The fracture behavior of 52100 steel hardened and tempered to RC62 has been investigated as a function of austenitizing over the temperature range from 800 to 1100°C. Specimens were homogenized at 1150°C and either furnace cooled or isothermally transformed at 580°C to produce a pearlitic microstructure prior to austenitizing for hardening. Furnace-cooled specimens developed a proeutectoid carbide network that did not dissolve during subsequent austenitizing below Acm . The residual proeutectoid carbides and the carbide-free martensite-austenite structure between them controlled fracture and produced KIC of 19 MPa \ m1/2, the highest determined in this investigation. The specimens isothermally transformed prior to austenitizing below Acm produced a microstructure of fine spherical carbides dispersed throughout a fine martensitic matrix and did not contain residual proeutectoid carbides. The transgranular fracture of the latter specimens by microvoid coalescence around the closely spaced spherical carbides resulted in the lowest values of fracture toughness, 14 to 16 MPa\ m1/2, determined in these experiments. Austenitizing above Acm caused solution of all carbides, a gradual coarsening of the austenitic grain size, a transition to plate martensite, and an increase in retained austenite. Fracture toughness increased slightly with increasing austenitizing temperature above Acm despite the fact that fracture propagated primarily along the austenitic grain boundaries. The improved fracture toughness, verified by scanning electron microscopy of the fatigue crack-overload fracture interface, is believed to be caused in part by transgranular crack propagation during the first stages of crack extension that are most important in determining K1C.

Keywords

Carbide Austenite Martensite Fracture Toughness Metallurgical Transaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Stickels:Met. Trans., 1974, vol. 5, pp. 865–74.CrossRefGoogle Scholar
  2. 2.
    K. Monma, R. Maruta, T. Yamamoto, and Y. Wakikado:Jap. Inst. Metals J., 1968, vol. 32, pp. 1198–204.Google Scholar
  3. 3.
    L. O. Uhrus: Special Report ’77, The Iron and Steel Institute, 1963, p. 104.Google Scholar
  4. 4.
    C. M. Lyne and A. Kasak:Trans. ASM, 1968, vol. 61, pp. 10–13.Google Scholar
  5. 5.
    L. Vincent, B. Coquillet, and P. Guiraldeng:Grain Boundaries in Engr. Matis., J. L. Walteret al, eds., pp. 409–19, Claitor’s Publishing Division, Baton Rouge, La., 1975.Google Scholar
  6. 6.
    J. Buchwald and R. W. Heckel:Trans. ASM, 1968, vol. 61, pp. 750–56.Google Scholar
  7. 7.
    R. Tricot, J. Monnot, and M. Lluans:Met. Eng. Quart., 1972, vol. 12, p. 3947.Google Scholar
  8. 8.
    H. Swahn, P. C. Becker, and O. Vingsbo:Metal Sci., 1976, vol. 10, pp. 35–39.CrossRefGoogle Scholar
  9. 9.
    H. Swahn, P. C. Becker, and O. Vingsbo:Met. Trans. A, 1976, vol. 7A, pp. 1099–110.Google Scholar
  10. 10.
    C. A. Stickels:Met. Trans. A, 1977, vol. 8A, pp. 63–70.Google Scholar
  11. 11.
    A. R. Marderand, A. O. Benscoter:Met. Trans., 1970,vol. 1, pp. 3234–37.Google Scholar
  12. 12.
    R. P. Brobst: M.S. Thesis, Lehigh University, Bethlehem, Pa., 1973.Google Scholar
  13. 13.
    M. G. Mendiratta, J. Sasser, and G. Krauss:Met. Trans., 1972, vol. 3, pp. 351–53.Google Scholar
  14. 14.
    S. K. Wallack and G. Krauss: Proceedings of the First JIM International Symposium on “New Aspects of Martensitic Transformation”, The Japan Institute of Metals, Sendai, Japan, 1976.Google Scholar
  15. 15.
    Atlas of Isothermal Transformation and Cooling Transformation Diagrams, 1977, ASM, Metals Park, Ohio, p. 217.Google Scholar
  16. 16.
    Annual Book of ASTM Standards, ASTM Standard: E 399-74, ASTM, Philadelphia, 1976.Google Scholar
  17. 17.
    A. Benscoter: Homer Research Laboratories, Bethlehem Steel Corp., private communication, January, 1974.Google Scholar
  18. 18.
    Annual Book of ASTM Standards, ASTM Standard: E 112-74, ASTM, Philadelphia, 1976.Google Scholar
  19. 19.
    A. R. Johnson:Met. Trans. A, 1977, vol. 8A, pp. 891–97.Google Scholar
  20. 20.
    K. Kiyonaga: inToward Improved Ductility and Toughness, Climax Molybdenum Development Company, 1972, pp. 207-39.Google Scholar
  21. 21.
    G. Krauss:Met. Trans., in press.Google Scholar
  22. 22.
    G. T. Hahn and A. R. Rosenfield:Met. Trans., 1975, vol. 6A, pp. 653–68.Google Scholar
  23. 23.
    S. P. Rawal and J. Gurland:Met. Trans. A, 1977, vol. 8A, pp. 691–98.Google Scholar
  24. 24.
    Z. Glowacki and A. Barbacki:J. Iron Steel Inst., 1972, vol. 210, p. 724.Google Scholar
  25. 25.
    G. Y. Lai, W. E. Wood, R. A. Clark, V. F. Zackay, and E. R. Parker:Met. Trans., 1974, vol. 5, pp. 1663–70.CrossRefGoogle Scholar
  26. 26.
    R. O. Ritchie, B. Francis, and W. L. Server:Met. Trans. A, 1976, vol. 7A, pp. 831–38.CrossRefGoogle Scholar
  27. 27.
    J. E. Srawley: Chapter 2 inFracture, vol. 4, Academic Press, 1969, pp. 45-68.Google Scholar

Copyright information

© American Society for Metals and the Metallurgical Society of AIME 1978

Authors and Affiliations

  • Kozo Nakazawa
    • 1
  • George Krauss
    • 2
  1. 1.National Research Institute for MetalsTokyoJapan
  2. 2.Department of Metallurgical EngineeringColorado School of MinesGolden

Personalised recommendations