Skip to main content
Log in

Tempering of Mn and Mn-Si-V Dual-Phase Steels

  • Symposium on Tempering of Steel
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Changes in the yield behavior, strength, and ductility of a Mn and a Mn-Si-V dual-phase (ferrite-martensite) steel were investigated after tempering one hour at 200 to 600 °C. The change in yield behavior was complex in both steels with the yield strength first increasing and then decreasing as the tempering temperature was increased. This complex behavior is attributed to a combination of factors including carbon segregation to dislocations, a return of discontinuous yielding, and the relief of residual stresses. In contrast, the tensile strength decreased continuously as the tempering temperature was increased in a manner that could be predicted from the change in hardness of the martensite phase using a simple composite strengthening model. The initial tensile ductility (total elongation) of the Mn-Si-V steel was much greater than that of the Mn steel. However, upon tempering up to 400 °C, the ductility of the Mn-Si-V decreased whereas that of the Mn steel increased. As a result, both steels had similar ductilities after tempering at 400 °C or higher temperatures. These results are attributed to the larger amounts of retained austenite in the Mn-Si-V steel (9 pct) compared to the Mn steel (3 pct) and its contribution to tensile ductility by transforming to martensite during plastic straining. Upon tempering at 400 °C, the retained austenite decomposes to bainite and its contribution to tensile ductility is eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Davies:Metall. Trans. A, 1978, vol. 9A, pp. 671–79.

    CAS  Google Scholar 

  2. R. G. Davies: ibid, pp. 41–52.

    CAS  Google Scholar 

  3. M.S. Rashid: inFormable HSLA and Dual-Phase Steels, A.T. Davenport, ed., TMS-AIME, New York, NY, 1979, pp. 1–24.

    Google Scholar 

  4. J. M. Rigsbee and P.J. VanderArend:, pp. 58–88.

    Google Scholar 

  5. T. Furukawa, H. Murikawa, H. Takechi, and K. Koyama: inStructure and Properties of Dual-Phase Steels, R. A. Kot and J. W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 281–303.

    Google Scholar 

  6. B.V. N. Rao and A.K. Sachdev: unpublished research, General Motors Research Laboratory, Warren, MI, 1981.

  7. G. R. Speich and R. L. Miller: inStructure and Properties of Dual-Phase Steels, R.A. Kot and J. W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 145–82.

    Google Scholar 

  8. G. T. Eldis:, pp. 202–20.

    Google Scholar 

  9. G. R. Speich: inFundamentals of Dual-Phase Steels, R. A. Kot and B.L. Bramfitt, eds., TMS-AIME, Warrendale, PA, 1981, pp. 3–39.

    Google Scholar 

  10. A. R. Marder:ibid.

    Google Scholar 

  11. S.S. Hansen and P.R. Pradhan:, pp. 113–44.

    Google Scholar 

  12. A.R. Marder:Metall. Trans. A, 1981, vol. 12A, pp. 1569–79. 13.F.E. Huggins and G. P. Huffman: in Analytical Methods for Coal and CoalProducts, C. Karr, Jr., ed., Academic Press, vol. III, chapter 50, pp. 371-423, p. 1919.

    Google Scholar 

  13. G. P. Huffman and F. E. Huggins: in Applications of Physics in the Steel Industry, Amer. Phys. Soc. Conf. Proceedings, in press.

  14. G.R. Speich and W.C. Leslie:Metall. Trans., 1972, vol. 3, pp. 1043–54.

    Article  CAS  Google Scholar 

  15. J. M. Moyer and G.S. Ansell:Metall. Trans. A, 1975, vol. 6A, pp. 1785–90.

    CAS  Google Scholar 

  16. R. A. Grange, C. R. Hribal, and L. F. Porter:Metall. Trans. A, 1977, vol. 8A, pp. 1775–85.

    CAS  Google Scholar 

  17. G. R. Speich and R. L. Miller: inFundamentals of Dual-Phase Steels, R. A. Kot and B.L. Bramfitt, eds., TMS-AIME, Warrendale, PA, 1981, pp. 279–304.

    Google Scholar 

  18. D. K. Matlock, G. Krauss, L. F. Ramos, and G. S. Huppi: inStructure and Properties of Dual-Phase Steels, R. A. Kot and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 62–90.

    Google Scholar 

  19. J.M. Moyer and G.S. Ansell:Metall. Trans. A, 1975, vol. 6A, pp. 178–91.

    Google Scholar 

  20. M. Hillert:Jerkontorets Annaler, 1957, vol. 41, pp. 67–81.

    Google Scholar 

  21. R. L. Brown, H.J. Rack, and M. Cohen:Mat. Sci. and Eng., 1975, vol. 21, pp. 25–34.

    Article  CAS  Google Scholar 

  22. G. R. Speich: private communication, U. S. Steel Research Laboratory, Monroeville, PA, 1982.

  23. A. Consideré:Ann. Ponts de Chauss, 1885, vol. 9, pp. 574–75.

    Google Scholar 

  24. G.S. Huppi, D. K. Matlock, and G. Krauss:Scripta Met., 1980, vol. 14, pp. 239–43.

    Article  Google Scholar 

  25. W.A. Spitzig and R.J. Sober:Metall. Trans. A, 1981, vol. 12A, pp. 281–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the “Peter G. Winchell Symposium on Tempering of Steel” held at the Louisville Meeting of The Metallurgical Society of AIME, October 12-13, 1981, under the sponsorship of the TMS-AIME Ferrous Metallurgy and Heat Treatment Committees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speich, G.R., Schwoeble, A.J. & Huffman, G.P. Tempering of Mn and Mn-Si-V Dual-Phase Steels. Metall Trans A 14, 1079–1087 (1983). https://doi.org/10.1007/BF02659856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659856

Keywords

Navigation