Skip to main content
Log in

Environmental fatigue of an Al-Li-Cu alloy: Part II. Microscopic hydrogen cracking processes

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Microscopic fatigue crack propagation (FCP) paths in peak-aged unrecrystallized alloy 2090 are identified as functions of intrinsicda/dN- δK kinetics and environment. The FCP rates in longitudinal-transverse (LT)-oriented 2090 are accelerated by hydrogen-producing environments (pure water vapor, moist air, and aqueous NaCl), as defined in Part I. Subgrain boundary cracking (SGC) dominates for δK values where the cyclic plastic zone is sufficient to envelop subgrains. At low δK, when this crack tip process zone is smaller than the subgrain size, environmental FCP progresses on or near 100 or 110 planes, based on etch-pit shape. For inert environments (vacuum and He) and pure O2 with crack surface oxidation, FCP produces large facets along 111 oriented slip bands. This mode does not change with δK, and T1 decorated subgrain boundaries do not affect an expectedda/dN- δK transition for the inert environments. Rather, the complex dependence ofda/dN on δK is controlled by the environmental contribution to process zone microstructure-plastic strain interactions. A hydrogen embrittlement mechanism for FCP in 2090 is supported by similar brittle crack paths for low pressure water vapor and the electrolyte, the SGC and 100/110 crystallographic cracking modes, the influence of cyclic plastic zone volume (δK), and the benignancy of O2. The SGC may be due to hydrogen production and trapping at T1 bearing sub-boundaries after process zone dislocation transport, while crystallographic cracking may be due to lattice decohesion or hydride cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Piascik and R.P. Gangloff:Metall. Trans. A, 1990, vol. 22A, pp. 2415–28.

    Google Scholar 

  2. R.P. Gangloff:Environment Induced Cracking of Metals, R.P. Gangloff and M. Ives, eds., NACE, Houston, TX, 1990, pp. 55–109.

    Google Scholar 

  3. G.R. Yoder, L.A. Cooley, and T.W. Crooker:Scripta Metall., 1982, vol. 16, pp. 1021–25.

    Article  Google Scholar 

  4. M. Gao, P.S. Pao, and R.P. Wei:Metall. Trans. A, 1988, vol. 19A, pp. 1739–50.

    Article  CAS  Google Scholar 

  5. R.M. Pelloux:Trans. ASM, 1969, vol. 62, pp. 281–84.

    CAS  Google Scholar 

  6. C. Laird:Fatigue Crack Propagation, ASTM STP 415, ASTM, Philadelphia, PA, 1967, pp. 131–68.

    Google Scholar 

  7. P.J.E. Forsyth and D.A. Ryder:Metallurgia, 1961, vol. 63, pp. 117–24.

    CAS  Google Scholar 

  8. E.A. Starke, Jr. and G. Lutering:Fatigue and Microstructure, ASM, Metals Park, OH, 1979, pp. 205–43.

    Google Scholar 

  9. R.J.H. Wanhill and L. Schra: NLR Report NLR TR 87128 U, National Aerospace Laboratory, Amsterdam, Netherlands, 1987.

  10. J.A. Feeney, J.C. McMillan, and R.P. Wei:Metall. Trans., 1970, vol. 1, pp. 1741–57.

    Article  CAS  Google Scholar 

  11. D.A. Meyn:Metall. Trans., 1971, vol. 2, pp. 853–65.

    Article  CAS  Google Scholar 

  12. P.J.E. Forsyth:Acta Metall., 1963, vol. 11, pp. 703–16.

    Article  Google Scholar 

  13. C.A. Stubbington:Metallurgia, 1963, vol. 65, pp. 109–21.

    Google Scholar 

  14. N.J.H. Holroyd and D. Hardie:Corros. Sci., 1983, vol. 23, pp. 527–46.

    Article  CAS  Google Scholar 

  15. K.J. Nix and H.M. Flower:Acta Metall., 1982, vol. 30, pp. 1549–59.

    Article  Google Scholar 

  16. J. Lankford and D.L. Davidson:Acta Metall., 1982, vol. 31, pp. 1273–84.

    Article  Google Scholar 

  17. R.E. Stoltz and R.M. Pelloux:Metall. Trans., 1972, vol. 3, pp. 2433–41.

    Article  CAS  Google Scholar 

  18. G.G. Garrett and J.F. Knott:Acta Metall., 1975, vol. 23, pp. 841–48.

    Article  CAS  Google Scholar 

  19. P.E. Bretz, B.J. Bucci, P.C. Malcolm, and A.K. Vasudevan:Fracture Mechanics: 14th Symp. ASTM STP791, ASTM, Philadelphia, PA, 1983, vol. 2, pp. 67–86.

    Google Scholar 

  20. P.J.E. Forsyth, C.A. Stubbington, and D. Clark:J. Inst. Met., 1962, vol. 90, pp. 238–47.

    Google Scholar 

  21. A. Niegel, H.-J. Gudladt, and V. Gerold:Fatigue '87, R.O. Ritchie and E.A. Starke, Jr., eds., EMAS, West Midlands, United Kingdom, 1987, pp. 1229–38.

    Google Scholar 

  22. A. Niegel, H.-J. Gudladt, and V. Gerold:J. Phys., Coll. C5, 1988, vol. 49, pp. 659–63.

    Google Scholar 

  23. F.P. Ford:Corrosion, 1979, vol. 35, pp. 281–87.

    Article  CAS  Google Scholar 

  24. F.P. Ford:Environment Induced Cracking of Metals, R.P. Gangloff and M. Ives, eds., NACE, Houston, TX, 1990, pp. 139–65.

    Google Scholar 

  25. K.V. Jata and E.A. Starke, Jr.:Metall. Trans. A, 1986, vol. 17A, pp. 1011–26.

    Article  CAS  Google Scholar 

  26. K.T. Venkateswara Rao and R.O. Ritchie:Int. Mater. Rev., 1992, vol. 37, pp. 153–85.

    Article  CAS  Google Scholar 

  27. J.M. Duva, M.A. Daeubler, E.A. Starke, Jr., and G. Luetjering:Acta Metall., 1987, vol. 36, pp. 585–89.

    Article  Google Scholar 

  28. C.P. Blankenship, Jr.: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1992.

    Google Scholar 

  29. G.R. Yoder, P.S. Pao, M.A. Imam, and L.A. Cooley:Advances in Fracture Research, K. Salama, K. Ravi-Chandar, D.M.R. Taplin, and P. Rama Rao, eds., Pergamon, Oxford, United Kingdom, 1989, pp. 919–27.

    Google Scholar 

  30. K.T. Venkateswara Rao, W. Yu, and R.O. Ritchie:Metall. Trans. A, 1988, vol. 19A, pp. 549–61 and pp. 563-69.

    CAS  Google Scholar 

  31. G.R. Yoder, P.S. Pao, M.A. Imam, and L.A. Cooley:Aluminum- Lithium 5, T.A. Sanders, Jr., and E.A. Starke, Jr., eds., MCEP Ltd., Birmingham, United Kingdom, 1989, pp. 1033–41.

    Google Scholar 

  32. G.R. Yoder, P.S. Pao, M.A. Imam, and L.A. Cooley:Scripta Metall., 1988, vol. 22, pp. 1241–44.

    Article  CAS  Google Scholar 

  33. P.S. Pao, L.A. Cooley, M.A. Imam, and G.R. Yoder:Scripta Metall., 1989, vol. 23, pp. 1455–60.

    Article  CAS  Google Scholar 

  34. G.S. Chen and D.J. Duquette: Rensselaer Polytechnic Institute, Troy, NY, unpublished research, 1991.

  35. Y.B. Xu, L. Wang, Y. Zhang, Z.G. Wang, and Q.Z. Hu:Metall. Trans. A, 1991, vol. 22A, pp. 723–29.

    Article  CAS  Google Scholar 

  36. D.C. Slavik, C.P. Blankenship, Jr., E.A. Starke, Jr., and R.P. Gangloff:Metall. Trans. A, 1993, vol. 24A, pp. 1807–17.

    Article  CAS  Google Scholar 

  37. R. Tintillier, H.S. Yang, N. Ranganathan, and J. Petit:J. Phys., Coll. C3, Suppl. 9, pp. C3-777–C3-784 (1987).

  38. N. Ohrloff, A. Gysier, and G. Luetjering:J. Phys., Coll. C3, Suppl. 9, pp. C3-801–C3-807 (1987).

  39. P.S. Pao, M.A. Imam, L.A. Cooley, and G.R. Yoder:Corrosion, 1989, vol. 45, pp. 530–35.

    Article  CAS  Google Scholar 

  40. R. Balasubramaniam, D.J. Duquette, and K. Ranjan:Acta Metall. Mater., 1991, vol. 39, pp. 2607–13.

    Article  CAS  Google Scholar 

  41. R.S. Piascik: Ph.D. Dissertation, University of Virginia, Charlottes ville, VA, 1990.

    Google Scholar 

  42. R.P. Gangloff, D.C. Slavik, R.S. Piascik, and R.H. Van Stone: inSmall Crack Test Methods, J.M. Larsen and J.E. Allison, eds., ASTM STP 1149, ASTM, Philadelphia, PA, 1992, pp. 116–68.

    Chapter  Google Scholar 

  43. M.H. Tosten, A.K. Vasudevan, and P.R. Howell:Aluminum- Lithium Alloys III, C. Barker, P.J. Gregson, S.J. Harris, and C.J. Peel, eds., Institute of Metals, Oxford, United Kingdom, 1986, pp. 490–95.

    Google Scholar 

  44. R.S. Piascik and R.P. Gangloff:Environmental Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 233–40.

    Google Scholar 

  45. Chuang-Hsi, Trancy Tsab, and P.P. Pizzo:Corrosion '85, NACE, Houston, TX, 1985, paper no. 53.

  46. R.G. Buchheit, Jr. and G.E. Stoner:Aluminum-Lithium Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., MCEP Ltd., Birmingham, United Kingdom, 1989, pp. 1347–56.

    Google Scholar 

  47. R.G. Buchheit, Jr., J.P. Moran, and G.E. Stoner:Corrosion, 1990, vol. 46, pp. 610–17.

    Article  CAS  Google Scholar 

  48. S. Suresh:Metall. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Article  Google Scholar 

  49. K.T. Venkateswara Rao, W. Yu, and R.O. Ritchie:Metall. Trans. A, 1989, vol. 20A, pp. 485–97.

    CAS  Google Scholar 

  50. M. Peters, V. Bachmann, and K. Welpmann:J. Phys., Coll. C3, 1987, Suppl. 9, pp. C3–785–C3–791.

  51. T. Magnin, P. Rieux, C. Lespinasse, and C. Bathias:J. Phys., Coll. C3, 1987, Suppl. 9, pp. C3–817–C3–822.

  52. N.M. Grinberg:Int. J. Fatigue, 1982, Apr., pp. 83–95.

  53. H.L. Marcus, J.C. Williams, and N.E. Paton:Corrosion Fatigue: Chemistry, Mechanics and Microstructure, O. Devereux, A.J. McEvily, and R.W. Staehle, eds., NACE-1, NACE, Houston, TX, 1972, pp. 346–58.

    Google Scholar 

  54. N.J.H. Holroyd:Environment Induced Cracking of Metals, R.P. Gangloff and M. Ives, eds., NACE, Houston, TX, 1990, pp. 311–45.

    Google Scholar 

  55. R.C. Dorwood and K.R. Hasse:Corrosion, 1988, vol. 44 (12), pp. 932–41.

    Article  Google Scholar 

  56. G.R. Yoder, L.A. Cooley, and T.W. Crooker:Fracture Mechanics: 14th Symp., J.C. Lewis and G. Sines, eds., ASTM STP 791, ASTM, Philadelphia, PA, 1983, vol. 1, pp. 313–49.

    Google Scholar 

  57. W.W. Gerberich and S. Chen:Environmental Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 167–87.

    Google Scholar 

  58. H.K. Birnbaum:Environment Induced Cracking of Metals, R.P. Gangloff and M. Ives, eds., NACE, Houston, TX, 1990, pp. 21–29.

    Google Scholar 

  59. J.K. Tien, A.W. Thompson, I.M. Bernstein, and R.J. Richards:Metall. Trans. A, 1976, vol. 7A, pp. 821–29.

    Article  CAS  Google Scholar 

  60. J.P. Hirth:Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    Article  CAS  Google Scholar 

  61. S.P. Lynch:Scripta Metall., 1986, vol. 20, pp. 1067–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Materials Science, University of Virginia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piascik, R.S., Gangloff, R.P. Environmental fatigue of an Al-Li-Cu alloy: Part II. Microscopic hydrogen cracking processes. Metall Trans A 24, 2751–2762 (1993). https://doi.org/10.1007/BF02659499

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659499

Keywords

Navigation