Advertisement

InflammoPharmacology

, Volume 2, Issue 2, pp 121–127 | Cite as

The effect of pentadecapeptide BPC 157 on inflammatory, non-inflammatory, direct and indirect pain and capsaicin neurotoxicity

  • P. SikiriĆ
  • K. Gyires
  • S. Seiwerth
  • Z. GrabarevlĆ
  • R. RuČman
  • M. Petek
  • I. RotkviĆ
  • B. TurkoviĆ
  • I. UdoviČĆ
  • V. JagiĆ
  • B. Mildner
  • M. Duvnjak
  • Z. DaniloviĆ
  • M. Kolega
  • A. Sallmani
  • S. DjaČiĆ
  • M. HanzevaČki
  • N. Lang
  • V. SimiČeviĆ
  • M. VeljaČa
  • V. Orihovac
  • M. BanIĆ
  • T. BrkiĆ
  • G. Buljat
  • D. PeroviĆ
  • S. Miše
  • A. MarovlĆ
  • J. ŠeparoviĆ
  • V. CoriĆ
  • K. BuliĆ
  • A. Cviko
  • M. Bura
Article

Abstract

The anti-nociceptive effects of a newly synthesized pentadecapeptide coded BPC 157 (an essential fragment of new organoprotective gastric juice peptide BPC) was evaluated in comparison with aspirin and morphine reference standards, in various experimental models of indirect/direct nociception and neurotoxicity: writhing (acetic acid/magnesium sulphate), tail pinching, hot-plate, and capsaicin application. BPC 157 administered either in the ng or μg per kg range, intraperitoneally, significantly reduced the reactions in the writhing (inflammatory and non-inflammatory, prostaglandin-dependent and independent) and tail pinching tests. In the hot-plate test, unlike morphine, BPC 157 had no effect on normal animals. However, when given to capsaicin treated rats, BPC 157 strongly reduced capsaicin-allodynia, either given as pretreatment or once daily for 14 days after the capsaicin injection. This reduction in capsaicin’s effect could not be obtained when BPC 157 was applied in the presence of established capsaicin-somatosensory neuron degeneration (application only on the 14th day after capsaicin), so it is possible that the effects of BPC 157 could be related specifically to the integrity of capsaicin-sensitive somatosensory neurons and their protection (e.g. primary afferent neurons having small-diameter somata and unmyelinated (C-) or thinly myelinated (A6-) fibres).

Keywords

pentadecapeptide BPC 157 essential fragment of organoprotective gastric juice peptide BPC writhing (acetic acid/magnesium sulphate) tail pinching test hot-plate test inflammatory/non-inflammatory, indirect/direct nociception capsaicin allodynia capsaicin-sensitive somatosensory neurons integrity/protection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sikiric P, Petek M, Rucman R et al. Hypothesis: stomach stress response, diagnostic and therapeutical value: a new approach in organoprotection. Exp Clin Gastroenterol. 1991;l:15–6.Google Scholar
  2. 2.
    Sikirić P, Petek M, Rotkvic I et al. Antiulcerogenic and antiinflammatory effect of a new gastric juice peptide - body protection compound. Exp Clin Gastroenterol. 1991;l:17–20.Google Scholar
  3. 3.
    Sikirif P, Sciwerth S, Grabarevif Z et al. The significance of the gastroprotective effect of body protection compound (BPC): modulation by different procedures. Acta Physiol Hung. 1992;80:89–98.Google Scholar
  4. 4.
    Sikirif P, Petek M, Rucman R et al. A new gastric juice peptide, BPC - an overview of stomach/stress/organoprotection hypothesis and BPC beneficial effects. J Physiol (Paris). 1993;87 [in press].Google Scholar
  5. 5.
    Mppozsik G, Sikirif P, Petek M. Gastric mucosal preventing body protective compound (BPC) on the development of ethanol and HCl-induced gastric mucosal injury. Exp Clin Gastroenterol. 1991;l:87–90.Google Scholar
  6. 6.
    Brand L, Berman E, Schawen R et al. NE-1955. A novel, orally active anti-inflammatory analgesic. Drugs Exp Clin Res. 1987;13:259–62.PubMedGoogle Scholar
  7. 7.
    Collier HOJ, Dinnen LC, Johnson LA, Schneider C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother. 1968;32:295–310.PubMedGoogle Scholar
  8. 8.
    Gyires K, Knoll J. Inflammation and writhing syndrome inducing effect of PGE1, PGE2 and the inhibition of these actions. Pol J Pharmacol. 1975;27:257–64.Google Scholar
  9. 9.
    Gyires K, Torma Z. The use of the writhing in mice for screening different types of analgesics. Arch Int Pharmacodyn Ther. 1984;267:131–40.PubMedGoogle Scholar
  10. 10.
    Gyires K, Furst S, Miklya I, Badavari I, Knoll J. Analysis of the analgesic and anti-inflammatory effects of rimazolium, a pyrido-pyrimidine derivate, compared with that of prostaglandin synthesis inhibitors and morphine. Drugs Exp Clin Res. 1985;ll:493–500.Google Scholar
  11. 11.
    Knoll J, Gyires K, Hermecz I. l,6-Dimethyl-4-oxo-l,6,7,8,9,9a-hexahydro-4H-pyrido(l,2-a)-pyrimidine-3-caroxamide (CH-127) protects against the intestinal damage in rats caused by two weeks daily administration of indomethacin. Drugs Exp Clin Res. 1987;13:253–8.PubMedGoogle Scholar
  12. 12.
    Lampa E, Romano AR, Berino L et al. Pharmacological properties of a new non-steroidal anti-inflammatory drug: flunoxaprofen. Drugs Exp Clin Res. 1985;ll:501–9.Google Scholar
  13. 13.
    Rooks WH, Maloney PJ, Shott LD et al. The analgesic and anti-inflammatory profile of ketorolac and its tromethamine salt. Drugs Exp Clin Res. 1985;ll:479–92.Google Scholar
  14. 14.
    Sauvaire D, Michel A, Serrano JJ, Richard M. Pharmacological activity and toxicity of apyramide: comparison with non-steroidal anti-inflammatory agents. Drugs Exp Clin Res. 1987;13:247–52.PubMedGoogle Scholar
  15. 15.
    Vander Wende C, Margolin S. Analgesic test based upon experimentally induced acute abdominal pain in rats. Fed Proc. 1956;15:494.Google Scholar
  16. 16.
    Koster R, Anderson M, De Beer EJ. Acetic acid for analgesic screening. Fed Proc. 1959;18:412.Google Scholar
  17. 17.
    Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev. 1991;43:143–201.PubMedGoogle Scholar
  18. 18.
    Krieger DT. Brain peptide: what, where and why? Science. 1983;222:975–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Deraedt R, Jouquey S, Benzoni J, Peterfalvi M. Inhibition of prostaglandin biosynthesis by non-narcotic analgesic drugs. Arch Int Pharmacodyn. 1976;224:30–42.PubMedGoogle Scholar
  20. 20.
    Deraedt R, Jouquey S, Delevallee F, Flahaut M. Release of prostaglandins E and F in an algogenic reaction and its inhibition. Eur J Pharmacol. 1980;61:17–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Rainsford KD. Protective effects of the slow-release zinc complex, zinc monoglycerolate [Glyzinc(R)] on the gastrointestinal mucosae of rodents. Exp Clin Gastroenterol. 1991;l:349–60.Google Scholar
  22. 22.
    Rainsford KD, Whitehouse MW. Biochemical gastroprotection from acute ulceration induced by aspirin and related drugs. Biochem Pharmacol. 1980;29:1281–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Faden AI, Holaday JW. Opiate antagonists: a role in the treatment of hypovolemic shock. Science. 1979;205:317–8.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • P. SikiriĆ
    • 1
  • K. Gyires
    • 2
  • S. Seiwerth
    • 1
  • Z. GrabarevlĆ
    • 1
  • R. RuČman
    • 1
  • M. Petek
    • 1
  • I. RotkviĆ
    • 1
  • B. TurkoviĆ
    • 1
  • I. UdoviČĆ
    • 1
  • V. JagiĆ
    • 1
  • B. Mildner
    • 1
  • M. Duvnjak
    • 1
  • Z. DaniloviĆ
    • 1
  • M. Kolega
    • 1
  • A. Sallmani
    • 1
  • S. DjaČiĆ
    • 1
  • M. HanzevaČki
    • 1
  • N. Lang
    • 1
  • V. SimiČeviĆ
    • 1
  • M. VeljaČa
    • 1
  • V. Orihovac
    • 1
  • M. BanIĆ
    • 1
  • T. BrkiĆ
    • 1
  • G. Buljat
    • 1
  • D. PeroviĆ
    • 1
  • S. Miše
    • 1
  • A. MarovlĆ
    • 1
  • J. ŠeparoviĆ
    • 1
  • V. CoriĆ
    • 1
  • K. BuliĆ
    • 1
  • A. Cviko
    • 1
  • M. Bura
    • 1
  1. 1.CDD, Medical and Veterinary FacultyUniversity of ZagrebCroatia
  2. 2.Semmelweiss Medical SchoolBudapestHungary

Personalised recommendations