Skip to main content
Log in

Thermal activation model of endurance limit

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A thermal activation model of the endurance limit is proposed in the present study. It can quantitatively explain the effects of temperature and frequency on the endurance limit of metals at or below room temperature. Theoretical analysis indicates that the endurance limit, σac, which is considered as a parameter characterizing the resistance of metals to cyclic microplastic deformation, has the same thermally activated nature as the plastic flow stress has and it can be resolved into two independent components: the long-range internal stress (the athermal component), μ(εapc), and the short-range effective stress (the thermal component), σa *(T, εp). The former is considered as a material constant insensitive to temperature and strain rate (or frequency). The latter, the temperature- and strain rate-dependent part of the endurance limit, is approximately identical with the effective stress component of plastic flow stress (or cyclic yielding stress). In light of the thermal activation model, the temperature and strain-rate dependence of monotonic and cyclic flow stresses in a low alloy steel (16Mn) and a precipitation-hardening aluminum alloy (LY12CZ) were experimentally investigated. The results indicate that the effective stress components of monotonic and cyclic flow stresses are identical, if the temperature and strain rate are held unchanged, and that both of them are approximately independent of the magnitude of plastic strain. On the basis of the thermal activation model, an expression predicting the endurance limit below room temperature is offered. The predicted values of the endurance limit agree with the test data of steels and aluminum alloys available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.I. Stephens:Fatigue at Low Temperatures, ASTM STP 857, ASTM, Philadelphia, PA, 1985.

    Book  Google Scholar 

  2. J. Schijve:Prediction on Fatigue, JSME Int. J., Series I, 1991, vol. 34(3), pp. 269–80.

    Google Scholar 

  3. B. Lü: Ph.D. Thesis, Northwestern Polytechnical University, Xi'an, People's Republic of China, 1991.

  4. H.-P. Lieurade:Estimation des characteristiques de résistance et d'endurance en fatigue, La fatigue des materiaux et des structures, C. Bathias and J.P. Bailon, eds., L'Univeristé de Montreal, Montreal, PQ, Canada, 1981, pp. 31–71.

    Google Scholar 

  5. Handbook on Materials for Superconducting Machinery, Metal and Ceramic Information Center, 1977.

  6. R.D. McCammon and H.W. Rosenberg:Proc. R. Soc. London A, 1957, vol. 242 (1229), pp. 203–09.

    Article  CAS  Google Scholar 

  7. X. Zheng and G. Zhang:J. Northwestern Polytechnical University, (in Chinese), 1984, vol. 2 (2), pp. 223–26.

    Google Scholar 

  8. M. Klesnil and P. Lukas:Fatigue of Metallic Materials, Elsevier Scientific Publishing Company, Amsterdam, Holland, 1980, p. 159.

    Google Scholar 

  9. X. Zheng, C. Lin, H. Jiang, and B. LÜ:Acta Aeronautica Sinica, 1992, in press.

  10. G. Schock:Thermodynamics and Thermal Activation of Dislocation, Dislocation in Solid, F.R.N. Nabarro, ed., North- Holland Publishing Company, Amsterdam, 1980, pp. 64–164.

    Google Scholar 

  11. J.M.C. Li:Can. J. Phys., 1967, vol. 45, pp. 493–500.

    Article  CAS  Google Scholar 

  12. J. Polak and M. Klesnil:Mater. Sci. Eng., 1976, vol. 26, pp. 157–66.

    Article  CAS  Google Scholar 

  13. X. Zheng and B. Lü:Int. J. Fatigue, 1987, vol. 9 (2), pp. 169–74.

    CAS  Google Scholar 

  14. X. Zheng and B. Lü:Fatigue Formula under Cyclic Strain, Fatigue and Fracture Mechanics, Proc. 1st Int. Conf. on Localized Damage Computer Aided Assessment and Control, Portsmouth, United Kingdom, 1990, pp. 175–84.

    Google Scholar 

  15. D.T. Read:Mechanical Properties, Materials at Low Temperatures, R.P. Reed and A.F. Clark, eds., ASM, Metals Park, OH, 1983, pp. 237–68.

    Chapter  Google Scholar 

  16. I. Gupta and J.M.C. Li:Metall. Trans., 1970, vol. 1, pp. 2323–30.

    Article  CAS  Google Scholar 

  17. J.I. Michlak:Acta Metall., 1965, vol. 13, pp. 213–22.

    Article  Google Scholar 

  18. Z.S. Basinski and S.G. Basinksi:Acta Metall., 1989, vol. 37, pp. 3255–62.

    Article  CAS  Google Scholar 

  19. Z.S. Basinski, A.S. Korbel, and S.J. Basinski:Acta Metall., 1980, vol. 28, pp. 191–207.

    Article  CAS  Google Scholar 

  20. P. Lukas and L. Kunz:Mater. Sci. Eng., 1988, vol. 103A, pp. 233–39.

    Article  Google Scholar 

  21. B.I. Verkin, N.M. Grinberg, V.A. Serdyuk, and L.F. Yokovenko:Mater. Sci. Eng., 1983, vol. 48 (2), pp. 145–68.

    Article  Google Scholar 

  22. H. Abdel-Raouf and A. Plumtree:Metall. Trans., 1971, vol. 2, pp. 1863–67.

    Article  CAS  Google Scholar 

  23. N.E. Frost, K.J. Mash, and L.P. Pook:Metal Fatigue, Oxford Press, Oxford, United Kingdom, 1975.

    Google Scholar 

  24. Y.T. Chen, D.G. Attridge, and W.W. Gerbrich:Acta Metall., 1980, vol. 29, pp. 1171–85.

    Article  Google Scholar 

  25. H. Jiang: Master's Thesis, Northwestern Polytechnical University, Xi'an, People's Republic of China, 1989.

  26. J. Lin: Ph.D. Thesis, Xi'an Jiaotong University, People's Republic of China, 1989.

  27. J.W. Sprenek, M.G. Fotana, and H.E. Brooke:Trans. ASM, 1951, vol. 43, pp. 547–70.

    Google Scholar 

  28. P.L. Teed:The Properties of Materials at Low Temperatures, Champton & Hall, London, 1950.

    Google Scholar 

  29. J.L. Zambow and M.G. Fotana:Trans. ASM, 1949, vol. 41, pp. 480–518.

    Google Scholar 

  30. F.R. Schwartzberg, T.F. Kiefier, and R.D. Keys:Adv. Cryog. Eng., 1964, vol. 10, pp. 1–13.

    Google Scholar 

  31. F.W. Demoney and G.L. WolfenAdv. Cryog. Eng., 1960, vol. 16, pp. 590–603.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, B., Zheng, X. Thermal activation model of endurance limit. Metall Trans A 23, 2597–2605 (1992). https://doi.org/10.1007/BF02658063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658063

Keywords

Navigation