Skip to main content
Log in

Epitaxially stabilized GexSn1−x diamond cubic alloys

Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the stabilization of GexSn1-x on (001) InSb substrates, as well as InSb coated GaAs substrates. We find that alloys up to ≈1500Å can be stabilized when 0 <x < 0.13. Single crystal, twinned material has been grown forx = 0.16, but only for thicknesses up to 500Å. Forx < 0.13, reflection high energy electron diffraction (RHEED) patterns reveal four stages of growth: quasi-two-dimensional growth, threedimensional growth, twinned growth, and finally phase separated growth. Ion channeling (001) results support the RHEED data, showing that film quality degrades with increasing thickness. Double and triple crystal x-ray diffraction results indicate that 1200Å-thick GexSn1-x films have excellent crystallinity forx < 0.10. Forx > 0.10, we observe partial phase separation into coherent α-Sn and α-GeSn. The films are stable in the temperature range of 125-130° C, depending on Ge concentration. We present a thermodynamic model which exhibits the trends observed in the growth and stability of epitaxially stabilized GexSn1-x alloys. Electrical and optical measurements show consistently high carrier concentrations (1021 cm-3) and low carrier mobility (<1000 cm2/ Vsec) for the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. K. A. Mader and A. Baldereschi, Solid State Commun.69 1123 (1989).

    Article  Google Scholar 

  2. S. Oguz and W. Paul, Appl. Phys. Lett.43, 848 (1983).

    Article  CAS  Google Scholar 

  3. C. H. L. Goodman, IEEE Proc.129, 189 (1982).

    CAS  Google Scholar 

  4. S. Groves and W. Paul, Phys. Rev. Lett.11, 194 (1963).

    Article  CAS  Google Scholar 

  5. D. W. Jenkins and J. D. Dow, Phys. Rev. B36, 7994 (1987).

    Article  CAS  Google Scholar 

  6. T. Soma, H. Matsuo and S. Kagaya, Phys. Stat. Solidi105 311 (1981).

    CAS  Google Scholar 

  7. T. B. Massalski, Binary Alloy Phase Diagrams, vol. 2 (Am. Soc. Metals, 1986).

  8. R. F. C. Farrow, D. S. Robertson, G. M. Williams, A. G. Cullis, G. R. Jones, I. M. Young and P. N. J. Dennis, J. Cryst. Growth54, 507 (1981).

    Article  CAS  Google Scholar 

  9. R. F. C. Farrow, J. Vac. Sci. Tech.B 1, 222 (1983).

    Google Scholar 

  10. J. Menendez and H. Höchst, Thin Solid Films111, 375 (1984).

    Article  CAS  Google Scholar 

  11. L.-W. Tu, G. K. Wong and J. B. Ketterson, Appl. Phys. Lett. 54, 1010 (1989).

    Article  CAS  Google Scholar 

  12. M. T. Asom, A. R. Kortan, L. C. Kimerling, and R. C. Farrow, Appl. Phys. Lett.55, 1439 (1989).

    Article  CAS  Google Scholar 

  13. J. L. Reno and L. L. Stephenson, Appl. Phys. Lett.54, 2207 (1989).

    Article  CAS  Google Scholar 

  14. R. C. Bowman, Jr., P. M. Adams, M. A. Engelhardt and H. Hochst, J. Vac. Sci. Tech.A 8, 1577 (1990).

    Google Scholar 

  15. W. A. Jesser, Mat. Sci. Eng.4, 279 (1969).

    Article  CAS  Google Scholar 

  16. G. B. Stringfellow, J. Appl. Phys.43, 3455 (1972).

    Article  CAS  Google Scholar 

  17. J. E. Greene, J. Vac. Sci. Tech.B 1, 229 (1983).

    Google Scholar 

  18. J. L. Martin and A. Zunger, Phys. Rev. Lett.56, 1400 (1986).

    Article  Google Scholar 

  19. R. Bruinsma and A. Zangwill, J. Phys.47, 2055 (1986).

    CAS  Google Scholar 

  20. F. C. Larche and J. W. Cahn, J. Appl. Phys.62, 1232 (1987).

    Article  CAS  Google Scholar 

  21. S. Froyen, S.-H. Wei and A. Zunger, Phys. Rev.B 38, 10124 (1988).

    Google Scholar 

  22. D. M. Wood and A. Zunger, Phys. Rev.B 40, 4062 (1989).

    Google Scholar 

  23. S. I. Shah and J. E. Greene, J. Cryst. Growth83, 3 (1987).

    Article  CAS  Google Scholar 

  24. P. R. Pukite, A. Harwit and S. S. Iyer, Appl. Phys. Lett.54, 2142 (1989).

    Article  CAS  Google Scholar 

  25. H. Hochst, M. Engelhardt and I. Herandez-Calderon, Phys. Rev.B 40, 9703 (1989).

    Google Scholar 

  26. H. J. Gossman, J. Appl. Phys.68, 2791 (1990).

    Article  Google Scholar 

  27. M. T. Asom, E. A. Fitzgerald, A. R. Kortan, B. Spear and L. C. Kimerling, Appl. Phys. Lett.55, 578 (1989).

    Article  CAS  Google Scholar 

  28. G. M. Williams, C. R. Whitehouse, A. G. Cullis, N. G. Chew and G. W. Blackmore, Appl. Phys. Lett.53, 1847 (1988).

    Article  CAS  Google Scholar 

  29. J. W. Matthews, Epitaxial Growth, Part B (Academic, New York, NY, 1975).

    Google Scholar 

  30. R. People and J. C. Bean, Appl. Phys. Lett.47, 322 (1985).

    Article  CAS  Google Scholar 

  31. E. A. Fitzgerald, J. Vac. Sci. Tech.B 7, 782 (1989).

    Google Scholar 

  32. E. A. Fitzgerald, Y. H. Xie, J. Michel, P. E. Freeland and B. E. Weir, MRS Symp. Proc.160, 59 (1989).

    Google Scholar 

  33. C. A. Hoffman, J. R. Meyer, R. J. Wagner, F. J. Bartoli, M. A. Engelhardt and H. Hochst, Phys. Rev.B 40, 11693 (1989).

    Google Scholar 

  34. R. E. Reed-Hill, Physical Metallurgy Principles (Brooks/Cole, Monterey, CA, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, E.A., Freeland, P.E., Asom, M.T. et al. Epitaxially stabilized GexSn1−x diamond cubic alloys. J. Electron. Mater. 20, 489–501 (1991). https://doi.org/10.1007/BF02657831

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657831

Key words

Navigation