Abstract
We have investigated the stabilization of GexSn1-x on (001) InSb substrates, as well as InSb coated GaAs substrates. We find that alloys up to ≈1500Å can be stabilized when 0 <x < 0.13. Single crystal, twinned material has been grown forx = 0.16, but only for thicknesses up to 500Å. Forx < 0.13, reflection high energy electron diffraction (RHEED) patterns reveal four stages of growth: quasi-two-dimensional growth, threedimensional growth, twinned growth, and finally phase separated growth. Ion channeling (001) results support the RHEED data, showing that film quality degrades with increasing thickness. Double and triple crystal x-ray diffraction results indicate that 1200Å-thick GexSn1-x films have excellent crystallinity forx < 0.10. Forx > 0.10, we observe partial phase separation into coherent α-Sn and α-GeSn. The films are stable in the temperature range of 125-130° C, depending on Ge concentration. We present a thermodynamic model which exhibits the trends observed in the growth and stability of epitaxially stabilized GexSn1-x alloys. Electrical and optical measurements show consistently high carrier concentrations (1021 cm-3) and low carrier mobility (<1000 cm2/ Vsec) for the alloys.
References
K. A. Mader and A. Baldereschi, Solid State Commun.69 1123 (1989).
S. Oguz and W. Paul, Appl. Phys. Lett.43, 848 (1983).
C. H. L. Goodman, IEEE Proc.129, 189 (1982).
S. Groves and W. Paul, Phys. Rev. Lett.11, 194 (1963).
D. W. Jenkins and J. D. Dow, Phys. Rev. B36, 7994 (1987).
T. Soma, H. Matsuo and S. Kagaya, Phys. Stat. Solidi105 311 (1981).
T. B. Massalski, Binary Alloy Phase Diagrams, vol. 2 (Am. Soc. Metals, 1986).
R. F. C. Farrow, D. S. Robertson, G. M. Williams, A. G. Cullis, G. R. Jones, I. M. Young and P. N. J. Dennis, J. Cryst. Growth54, 507 (1981).
R. F. C. Farrow, J. Vac. Sci. Tech.B 1, 222 (1983).
J. Menendez and H. Höchst, Thin Solid Films111, 375 (1984).
L.-W. Tu, G. K. Wong and J. B. Ketterson, Appl. Phys. Lett. 54, 1010 (1989).
M. T. Asom, A. R. Kortan, L. C. Kimerling, and R. C. Farrow, Appl. Phys. Lett.55, 1439 (1989).
J. L. Reno and L. L. Stephenson, Appl. Phys. Lett.54, 2207 (1989).
R. C. Bowman, Jr., P. M. Adams, M. A. Engelhardt and H. Hochst, J. Vac. Sci. Tech.A 8, 1577 (1990).
W. A. Jesser, Mat. Sci. Eng.4, 279 (1969).
G. B. Stringfellow, J. Appl. Phys.43, 3455 (1972).
J. E. Greene, J. Vac. Sci. Tech.B 1, 229 (1983).
J. L. Martin and A. Zunger, Phys. Rev. Lett.56, 1400 (1986).
R. Bruinsma and A. Zangwill, J. Phys.47, 2055 (1986).
F. C. Larche and J. W. Cahn, J. Appl. Phys.62, 1232 (1987).
S. Froyen, S.-H. Wei and A. Zunger, Phys. Rev.B 38, 10124 (1988).
D. M. Wood and A. Zunger, Phys. Rev.B 40, 4062 (1989).
S. I. Shah and J. E. Greene, J. Cryst. Growth83, 3 (1987).
P. R. Pukite, A. Harwit and S. S. Iyer, Appl. Phys. Lett.54, 2142 (1989).
H. Hochst, M. Engelhardt and I. Herandez-Calderon, Phys. Rev.B 40, 9703 (1989).
H. J. Gossman, J. Appl. Phys.68, 2791 (1990).
M. T. Asom, E. A. Fitzgerald, A. R. Kortan, B. Spear and L. C. Kimerling, Appl. Phys. Lett.55, 578 (1989).
G. M. Williams, C. R. Whitehouse, A. G. Cullis, N. G. Chew and G. W. Blackmore, Appl. Phys. Lett.53, 1847 (1988).
J. W. Matthews, Epitaxial Growth, Part B (Academic, New York, NY, 1975).
R. People and J. C. Bean, Appl. Phys. Lett.47, 322 (1985).
E. A. Fitzgerald, J. Vac. Sci. Tech.B 7, 782 (1989).
E. A. Fitzgerald, Y. H. Xie, J. Michel, P. E. Freeland and B. E. Weir, MRS Symp. Proc.160, 59 (1989).
C. A. Hoffman, J. R. Meyer, R. J. Wagner, F. J. Bartoli, M. A. Engelhardt and H. Hochst, Phys. Rev.B 40, 11693 (1989).
R. E. Reed-Hill, Physical Metallurgy Principles (Brooks/Cole, Monterey, CA, 1973).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Fitzgerald, E.A., Freeland, P.E., Asom, M.T. et al. Epitaxially stabilized GexSn1−x diamond cubic alloys. J. Electron. Mater. 20, 489–501 (1991). https://doi.org/10.1007/BF02657831
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02657831