Skip to main content
Log in

Comparison of superconducting and normal conducting high speed interconnections at 80 K

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High speed interconnections between chips and on top of chips in form of microstriplines constructed on the basis of high temperature superconductors and on the basis of copper are compared at 80° K for the case of step-like impulses in the frequency region of 0.1 GHz to 10 GHz,i.e., under conditions related to VHSI. High temperature superconductors are more favourable in regard to the minimum possible width of the stripline. Copper is more favourable in regard to the available area of the wiring board because of a lower possible value of the relative dielectric constant of the isolator between the conducting strips. Formulae for the minimum possible widthw of the stripline and for the maximum numbern of striplines within one layer of the wiring board are given—the wiring board considered has maximum size only just fulfilling the condition that all signals should reach their destination within half the clock time. By means of these formulae numerical values are evaluated on the basis of the properties of existing high temperature superconductors, copper and appropriate dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Frye, MRS 1987 Fall Meeting, Nov. 30-Dec. 5, Symp. I, paper 1.1.4.

  2. O. K. Kwon, B. W. Langley, R. F. W. Pease and M. R. Beasley, IEEE Electron Device Lett. 8, 582 (1987).

    Google Scholar 

  3. F. Lange, Thin Solid Films, July 88 (in the press).

  4. P. Vielhauer and F. Donath, Nachrichtentechnik-Elektronik31, 103 (1981).

    Google Scholar 

  5. F. Donath and P. Vielhauer, Nachrichtentechnik-Elektronik30, 270 (1980).

    Google Scholar 

  6. V. L. Newhouse, Applied Superconductivity, John Wiley & Sons, New York-London-Sidney, 1964, p. 216.

    Google Scholar 

  7. R. L. Kautz, J. Appl. Phys.,49, 308 (1978).

    Article  CAS  Google Scholar 

  8. T. Y. Hsiang, J. F. Whitaker, R. Sobolewski, D. R. Dykaar and G. A. Mourou, Appl. Phys. Lett.51, 1551 (1987).

    Article  CAS  Google Scholar 

  9. S. Sridhar, J. Appl. Phys. 63, 159 (1988).

    Article  CAS  Google Scholar 

  10. J. Tateno and N. Masaki, Jpn. J. Appl. Phys.26, L1564 (1987).

    Article  Google Scholar 

  11. A. Umezawa, G. W. Crabtree, J. Z. Liu, T. J. Moran, S. K. Malik, L. H. Nunez, W. L. Kwok and C. H. Sowers, Phys. Rev. Lett. Nov. 87.

  12. E. A. Lynton, Superconductivity, Methuen & Co., London, 1962.

    Google Scholar 

  13. M. Hein, N. Klein, G. Müller, H. Piel and R. W. Roth, Workshop on S.C., Argonne 87.

  14. J. F. Kwak, E. L. Venturini, D. S. Ginsley and W. Fu, Novel Superconductivity, Plenum Publishing Corporation, 1987 (edited by S. A. Wolf and V. L. Kresin).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, F. Comparison of superconducting and normal conducting high speed interconnections at 80 K. J. Electron. Mater. 18, 251–257 (1989). https://doi.org/10.1007/BF02657416

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657416

Key words

Navigation