Skip to main content
Log in

Performance of porous refractory valve for liquid metals

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

An aggregate of nonwettable refractory particles can act as an off-on valve to control the flow of liquid metals. The performance of such a particle valve is evaluated experimentally and theoretically. The breakthrough pressure, PBR, which is the pressure differential required to initiate flow through the particle valve has been theoretically derived: PBR = -10.928 [γLV/d] cos θ′A where γLV is the liquid-vapor surface tension, d is the uniform particle diameter, and θ′A is the apparent advancing contact angle between the liquid and solid. Experimentally determined breakthrough pressures for the Sn/Al2O3 and Hg/Al2O3 systems agree with and confirm the derived expression. Mechanisms which may lead to premature breakthrough. of the liquid through the valve are: i) failure due to direct impingement of liquid droplets on the particle valve, ii) failure by augmented hydrostatic pressure caused by an impinging liquid droplet, and iii) failure due to buoyancy forces acting on individual particles. Critical operating limits for each mechanism are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Langford and R.E. Cunningham:Mer.Trans. B, 1978, vol. 9B, pp. 5–19.

    Article  CAS  Google Scholar 

  2. D. Apelian, M. C. Flemings, and R. Mehrabian:J. Mater. Sci., 1975, vol. 10, pp. 460–68.

    Article  CAS  Google Scholar 

  3. K. Brondyke and P. D. Hess:Tram. TMS-IME, 1964, vol. 230, pp. 1553–56.

    CAS  Google Scholar 

  4. A. E. Scheidegger:The Physics of Flow Through Porous Media, 2nd ed., pp. 68–90, The MacMillan Co., NY, 1960.

    Google Scholar 

  5. A. E. Scheidegger:The Physics of Flow Through Porous Media,2nd ed., pp. 115–19, The MacMillan Co., NY, 1960.

    Google Scholar 

  6. P. C. Carman:Trans. Inst. Chem. Eng. (London), 1937, vol. 15, pp. 168–88.

    Google Scholar 

  7. L. E. Murr:Interfacial Phenomen in Metals and Alloys, pp. 87–90, Addison-Wesley Publishing Co., M A, 1975.

    Google Scholar 

  8. N. K. Adam: Discuss. Faraday Soc, 1948, no. 3, pp. 5-11.

  9. A. B. D. Cassie:Discuss. Faraday Soc, 1948, no. 3, pp. 11-16.

  10. R. Shuttleworth and G. L. J. Bailey:Discuss. Faraday Soc, 1948, no. 3, pp. 16-22.

  11. P. C. Carman: Discuss.Faraday Soc, 1948, no. 3, pp. 72-77.

  12. L. C. Graton and H. J. Fraser:J. Geol, 1935, vol. 43, pp. 785–909.

    Article  CAS  Google Scholar 

  13. R. P. Mayor and R. A. Stowe:J. Colloid Sci., 1965, vol. 20, pp. 893–911.

    Article  Google Scholar 

  14. L. K. Frevel and L. J. Kressley:nal. Chem., 1963, vol. 35, pp. 1492–1502.

    Article  CAS  Google Scholar 

  15. B. C. Allen and W. D. Kingery:Trans. TMS-IME, 1959, vol. 215, pp. 30–37.

    CAS  Google Scholar 

  16. D.W. J. White:Metall. Rev., 1968, vol. 13, pp. 73–96.

    CAS  Google Scholar 

  17. F. A. Halden and W. D. Kingery:J. Phys. Chem., 1955, vol. 59, pp. 557–59.

    Article  CAS  Google Scholar 

  18. P. Kozakevitch:Surface Phenomen of Metals, pp. 223-45, SCI Monogr. no. 28, London, 1968.

  19. J. M. Svobod and G. H. Geiger:Trans. TMS-IME, 1969, vol. 245, pp. 2363–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paliwal, M., Apelian, D. & Langford, G. Performance of porous refractory valve for liquid metals. Metall Trans B 11, 39–50 (1980). https://doi.org/10.1007/BF02657169

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657169

Keywords

Navigation