Skip to main content
Log in

Solubility and activity of oxygen in liquid nickel in equilibrium with α-Al2O3 and NiO · (1 + x)Al2O3

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The limiting solubility of oxygen in liquid nickel in equilibrium withα-alumina and nickel aluminate has been measured by inert gas fusion analysis of suction samples in the temperature range 1730 to 1975 K. The corresponding oxygen potential has been monitored by a solid electrolyte cell consisting of calcia stabilized zirconia as the electrolyte and Mo + MoO2 as the reference electrode. The results can be summarized by the following equations:\(\log (at. pct O) = \frac{{ - 10,005}}{T} + 4.944 ( \pm 0.015)\) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn\(\Delta \mu _{O_2 } /4.606RT = log P _{O_2 }^{1/2} = \frac{{ - 13,550}}{T} + 4.411 ( \pm 0.009)\) From simultaneous measurements of the potential and concentration of oxygen in melts, not in thermodynamic equilibrium with alumina and aluminate phases, information on the composition dependence of the activity coefficient and the standard free energy of solution of oxygen is obtained. For the reaction,\(\frac{1}{2} O_2 \to \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{O} _{N1} \) ΔG o = -72,930 - 7.11T (±840) J gr.at.–1 \(\log f_O = \left\{ {\frac{{ - 500}}{T} + 0.216} \right\}at. pct O\) where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct) in the limit as concentration approaches zero. The oxygen solubility in liquid nickel in equilibrium with solid NiO, evaluated from thermodynamic data, is compared with information reported in the literature. Implications of the results to the deoxidation equilibria of aluminum in nickel are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.E. Bowers:J. Inst. Metals, 1961, vol. 90, pp. 321–28.

    Google Scholar 

  2. R. Fricke and G. Weitbrecht:Z. Electrochem. Angew. Phys. Chem., 1957, vol. 3, pp. 318–23.

    Google Scholar 

  3. H. Schmalzried:Z. Physik. Chem. (N.F.), 1960, vol. 25, pp. 178–84.

    CAS  Google Scholar 

  4. J. D. Tretjakow and H. Schmalzried:Ber. Bunsenges., Phys. Chem., 1965, vol. 69, pp. 396–401.

    Google Scholar 

  5. L. M. Lenev and I.A. Novokhatskii:Zh. Neorg. Khim., 1965, vol. 10, pp. 2400–03.

    CAS  Google Scholar 

  6. V. A. Levitski and T. N. Rezukhina:Isvest. Akad. Nauk SSSR, Neorg. Mater., 1966, vol. 2, pp. 145–50.

    Google Scholar 

  7. F. A. Elrefaie and W. W. Smeltzer:J. Electrochem Soc, 1981, vol. 128, pp. 2237–42.

    Article  CAS  Google Scholar 

  8. K.T. Jacob: unpublished research, 1978.

  9. A. Navrotsky and O. J. Kleppa:J. Inorg. Nucl. Chem., 1968, vol. 30, pp. 479–98.

    Article  CAS  Google Scholar 

  10. C.B. Alcock and J.C. Chan:Can. Met. Quart., 1972, vol. 11, pp. 559–64.

    CAS  Google Scholar 

  11. B. C. H. Steele: inElectromotive Force Measurements in High Temperature Systems, C. B. Alcock, ed., The Institution of Mining and Metallurgy, London, 1968, pp. 3–28.

    Google Scholar 

  12. M. W. Case, Jr., J. L. Curnutt, R. A. McDonald, and A. N. Syverud: Janaf Thermochemical Tables, 1978 Supplement,J. Phys. Chem. Ref. Data, 1978, vol. 7, pp. 793–940.

    Article  Google Scholar 

  13. G. K. Sigworth, J. F. Elliott, G. Vaughan, and G.H. Geiger:Can. Met. Quart., 1977, vol. 16, pp. 104–10.

    CAS  Google Scholar 

  14. N. Kemori, I. Katayama, and Z. Kozuka:Trans. Jap. Inst. Metals, 1980, vol. 21, pp. 285–92.

    CAS  Google Scholar 

  15. H.A. Wriedt and J. Chipman:Trans. AIME, 1956, vol. 206, pp. 1195–99.

    Google Scholar 

  16. W. A. Fischer and W. Ackermann:Arch. Eisenheuttenw., 1966, vol. 37, pp. 43–47.

    CAS  Google Scholar 

  17. E. S. Tankins, N. A. Gokcen, and G.R. Belton:Trans. TMS-AIME, 1964, vol. 230, pp. 820–27.

    CAS  Google Scholar 

  18. N. Kemori, I. Katayama, and Z. Kozuka:J. Jap. Inst. Metals, 1976, vol. 40, pp. 751–57.

    CAS  Google Scholar 

  19. B.F. Belov, I.A. Novokhatskiy, and Yu. A. Lobanov:Izv. Akad. Nauk SSSR, Metal, 1967, No. 3, pp. 19-23.

  20. H. Sakao and K. Sano:J. Jap. Inst. Metals, 1962, vol. 26, pp. 30–34.

    Google Scholar 

  21. H. Schenck, E. Steinmetz, and P.C. Rhee:Arch. Eisenheuttenw., 1969, vol. 40, pp. 619–20.

    Google Scholar 

  22. M. Iwase, S. Miki, andT. Mori:J. Chem. Thermodyn., 1979, vol. 11, pp. 307–15.

    Article  Google Scholar 

  23. V. V. Averin, A. Yu. Polyakov, and A. M. Samarin:Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1957, No. 8, p. 120.

  24. T. Chiang and Y. A. Chang:Metall. Trans. B, 1976, vol. 7B, pp. 453–67.

    Article  CAS  Google Scholar 

  25. D. R. Stull and H. Prophet: Janaf Thermochemical Tables, 2nd ed., NSRDS-NBS 37, U.S. Department of Commerce, Washington, DC, 1971.

  26. O. Kubaschewski, E. LL. Evans, and C.B. Alcock:Metallurgical Thermochemistry, 4th ed., Pergamon Press, London, 1967.

    Google Scholar 

  27. G.K. Sigworth and J. F. Elliott:Metal Sci., 1974, vol. 8, pp. 298–310.

    CAS  Google Scholar 

  28. B. R. Conard: J. Roy Gordon Research Laboratory, INCO Metals Co., Sheridan Park, Mississauga, ON, Canada L5K 1Z9, private communication, 1978.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, K.T. Solubility and activity of oxygen in liquid nickel in equilibrium with α-Al2O3 and NiO · (1 + x)Al2O3 . Metall Trans B 17, 763–770 (1986). https://doi.org/10.1007/BF02657138

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657138

Keywords

Navigation