Metallurgical Transactions B

, Volume 17, Issue 4, pp 763–770 | Cite as

Solubility and activity of oxygen in liquid nickel in equilibrium with α-Al2O3 and NiO · (1 + x)Al2O3

  • K. T. Jacob
Physical Chemistry


The limiting solubility of oxygen in liquid nickel in equilibrium withα-alumina and nickel aluminate has been measured by inert gas fusion analysis of suction samples in the temperature range 1730 to 1975 K. The corresponding oxygen potential has been monitored by a solid electrolyte cell consisting of calcia stabilized zirconia as the electrolyte and Mo + MoO2 as the reference electrode. The results can be summarized by the following equations:\(\log (at. pct O) = \frac{{ - 10,005}}{T} + 4.944 ( \pm 0.015)\) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn\(\Delta \mu _{O_2 } /4.606RT = log P _{O_2 }^{1/2} = \frac{{ - 13,550}}{T} + 4.411 ( \pm 0.009)\) From simultaneous measurements of the potential and concentration of oxygen in melts, not in thermodynamic equilibrium with alumina and aluminate phases, information on the composition dependence of the activity coefficient and the standard free energy of solution of oxygen is obtained. For the reaction,\(\frac{1}{2} O_2 \to \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{O} _{N1} \) ΔGo = -72,930 - 7.11T (±840) J–1\(\log f_O = \left\{ {\frac{{ - 500}}{T} + 0.216} \right\}at. pct O\) where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct) in the limit as concentration approaches zero. The oxygen solubility in liquid nickel in equilibrium with solid NiO, evaluated from thermodynamic data, is compared with information reported in the literature. Implications of the results to the deoxidation equilibria of aluminum in nickel are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.E. Bowers:J. Inst. Metals, 1961, vol. 90, pp. 321–28.Google Scholar
  2. 2.
    R. Fricke and G. Weitbrecht:Z. Electrochem. Angew. Phys. Chem., 1957, vol. 3, pp. 318–23.Google Scholar
  3. 3.
    H. Schmalzried:Z. Physik. Chem. (N.F.), 1960, vol. 25, pp. 178–84.Google Scholar
  4. 4.
    J. D. Tretjakow and H. Schmalzried:Ber. Bunsenges., Phys. Chem., 1965, vol. 69, pp. 396–401.Google Scholar
  5. 5.
    L. M. Lenev and I.A. Novokhatskii:Zh. Neorg. Khim., 1965, vol. 10, pp. 2400–03.Google Scholar
  6. 6.
    V. A. Levitski and T. N. Rezukhina:Isvest. Akad. Nauk SSSR, Neorg. Mater., 1966, vol. 2, pp. 145–50.Google Scholar
  7. 7.
    F. A. Elrefaie and W. W. Smeltzer:J. Electrochem Soc, 1981, vol. 128, pp. 2237–42.CrossRefGoogle Scholar
  8. 8.
    K.T. Jacob: unpublished research, 1978.Google Scholar
  9. 9.
    A. Navrotsky and O. J. Kleppa:J. Inorg. Nucl. Chem., 1968, vol. 30, pp. 479–98.CrossRefGoogle Scholar
  10. 10.
    C.B. Alcock and J.C. Chan:Can. Met. Quart., 1972, vol. 11, pp. 559–64.Google Scholar
  11. 11.
    B. C. H. Steele: inElectromotive Force Measurements in High Temperature Systems, C. B. Alcock, ed., The Institution of Mining and Metallurgy, London, 1968, pp. 3–28.Google Scholar
  12. 12.
    M. W. Case, Jr., J. L. Curnutt, R. A. McDonald, and A. N. Syverud: Janaf Thermochemical Tables, 1978 Supplement,J. Phys. Chem. Ref. Data, 1978, vol. 7, pp. 793–940.CrossRefGoogle Scholar
  13. 13.
    G. K. Sigworth, J. F. Elliott, G. Vaughan, and G.H. Geiger:Can. Met. Quart., 1977, vol. 16, pp. 104–10.Google Scholar
  14. 14.
    N. Kemori, I. Katayama, and Z. Kozuka:Trans. Jap. Inst. Metals, 1980, vol. 21, pp. 285–92.Google Scholar
  15. 15.
    H.A. Wriedt and J. Chipman:Trans. AIME, 1956, vol. 206, pp. 1195–99.Google Scholar
  16. 16.
    W. A. Fischer and W. Ackermann:Arch. Eisenheuttenw., 1966, vol. 37, pp. 43–47.Google Scholar
  17. 17.
    E. S. Tankins, N. A. Gokcen, and G.R. Belton:Trans. TMS-AIME, 1964, vol. 230, pp. 820–27.Google Scholar
  18. 18.
    N. Kemori, I. Katayama, and Z. Kozuka:J. Jap. Inst. Metals, 1976, vol. 40, pp. 751–57.Google Scholar
  19. 19.
    B.F. Belov, I.A. Novokhatskiy, and Yu. A. Lobanov:Izv. Akad. Nauk SSSR, Metal, 1967, No. 3, pp. 19-23.Google Scholar
  20. 20.
    H. Sakao and K. Sano:J. Jap. Inst. Metals, 1962, vol. 26, pp. 30–34.Google Scholar
  21. 21.
    H. Schenck, E. Steinmetz, and P.C. Rhee:Arch. Eisenheuttenw., 1969, vol. 40, pp. 619–20.Google Scholar
  22. 22.
    M. Iwase, S. Miki, andT. Mori:J. Chem. Thermodyn., 1979, vol. 11, pp. 307–15.CrossRefGoogle Scholar
  23. 23.
    V. V. Averin, A. Yu. Polyakov, and A. M. Samarin:Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1957, No. 8, p. 120.Google Scholar
  24. 24.
    T. Chiang and Y. A. Chang:Metall. Trans. B, 1976, vol. 7B, pp. 453–67.CrossRefGoogle Scholar
  25. 25.
    D. R. Stull and H. Prophet: Janaf Thermochemical Tables, 2nd ed., NSRDS-NBS 37, U.S. Department of Commerce, Washington, DC, 1971.Google Scholar
  26. 26.
    O. Kubaschewski, E. LL. Evans, and C.B. Alcock:Metallurgical Thermochemistry, 4th ed., Pergamon Press, London, 1967.Google Scholar
  27. 27.
    G.K. Sigworth and J. F. Elliott:Metal Sci., 1974, vol. 8, pp. 298–310.Google Scholar
  28. 28.
    B. R. Conard: J. Roy Gordon Research Laboratory, INCO Metals Co., Sheridan Park, Mississauga, ON, Canada L5K 1Z9, private communication, 1978.Google Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining 1986

Authors and Affiliations

  • K. T. Jacob
    • 1
  1. 1.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations