Skip to main content
Log in

Leaching kinetics of natural cobalt triarsenide in chlorine solutions

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The influence of stirring speed, particle size, chlorine and hydrochloric acid concentrations, and temperature on the kinetics of chlorine leaching of skutterudite particles in a stirred vessel has been investigated. The reaction rate is limited by transport in the aqueous phase with significant resistance of the chemical reaction at temperatures below 20 °C. This is supported by (a) the rate constant increases with decrease in particle size, (b) the first-order dependence of the leaching rate with the total chlorine concentration and the insignificant effect of the hydrochloric acid concentration, (c) an apparent activation energy of 18 kJ/mole for transport control and an approximate value of 85 kJ/mole for the chemical reaction, and (d) the agreement of the experimental transport constants with the expected values for mass transfer coefficients. The reaction kinetics were analyzed by a shrinking core model in which [(Sh) p − 2] (D/d) was considered virtually independent of particle size, which is consistent with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Wadsworth: Hydrometallurgy, Research, Development and Plant Practice, K. Osseo-Asare and J. D. Miller, eds., AIME, New York, NY, 1982, pp. 3–38.

    Google Scholar 

  2. M. I. Sherman and J. D. H. Strickland:Trans. AIME, 1957, vol. 209, pp. 1386–88.

    CAS  Google Scholar 

  3. M.I. Sherman and J. D. H. Strickland:Trans. AME, 1957, vol. 209, pp. 795–800.

    Google Scholar 

  4. K.J. Jackson and J.D.H. Strickland:Trans. TMS-AIME, 1958, vol. 212, pp. 373–79.

    CAS  Google Scholar 

  5. R. D. Groves and P. B. Smith: RI No. 7801, Bureau of Mines, Washington, DC, 1973.

  6. D.M. Muir, D.C. Gale, A. J. Parker, and D.E. Giles:Proc. Australas. Inst. Min. Metall., 1976, vol. 259, pp. 23–25.

    CAS  Google Scholar 

  7. B.K. Thomas and D.J. Fray:Metall. Trans. B, 1981, vol. 12B, pp. 281–85.

    CAS  Google Scholar 

  8. J. M. Demarthe, P. Fossi, and L. Gandon: U.S. Patent 4435368, 1984.

  9. C.W. A. Muir, R.D. Stett, and C. J. Priddle: Hydrometallurgy, Research, Development and Plant Practice, K. Osseo-Asare and J.D. Miller, eds., AIME, New York, NY, 1982, pp. 825–38.

    Google Scholar 

  10. C. Nú≈nez and J. Vi≈nals:Trans. IMM, 1984, vol. 93, pp. C162-C172.

    Google Scholar 

  11. Say Wenching and M. E. Wadsworth: 114th AIME Annual Meeting, New York, NY, 1985.

  12. E. O. Stensholt, H. Zachariasen, and J. H. Lund: Extraction metallurgy ’85, IMM publ., London, 1985, pp. 377–97.

    Google Scholar 

  13. F. A. Cotton and G. Wilkinson: Quimica Inorgánica Avanzada, Limusa-Wiley, Mexico, 1969, pp. 596–97.

    Google Scholar 

  14. M.S. Sherrill and E. F. Izard:J. Am. Chem. Soc, 1931, vol. 53, pp. 1667–74.

    Article  CAS  Google Scholar 

  15. R. E. Connick and Y. T. Chia:J. Am. Chem. Soc, 1959, vol. 81, pp. 1280–84.

    Article  CAS  Google Scholar 

  16. K. Pitzer and L. Brewer: Thermodynamics, 2nd ed., McGraw-Hill Book Co., New York, NY, 1963, p. 317.

    Google Scholar 

  17. F. Camacho, F. Diaz, V. Moreno, and J. A. Clemente:Anales de Quimica, 1980, vol. 76, pp. 397–400.

    Google Scholar 

  18. H.Y. Sohn and M.E. Wadsworth: Rate Processes of Extractive Metallurgy, Plenum Press, New York, NY, 1979, pp. 11, 135, 143.

    Google Scholar 

  19. P. Harriott:Am. Inst. Chem. Eng. J., 1962, vol. 8, pp. 93–102.

    CAS  Google Scholar 

  20. D. M. Levins and J. R. Glastonbury:Trans. Inst. Chem. Eng., 1972, vol. 50, pp. 132–46.

    CAS  Google Scholar 

  21. N. A. Sareyed-Dim and F. Lawson:Trans. IMM, 1976, vol. 85, pp. C1-C6.

    Google Scholar 

  22. C. Vu and K.N. Han:Metall. Trans. B, 1979, vol. 10B, pp. 57–61.

    CAS  Google Scholar 

  23. C.R. Wilke and P. Chang:Am. Inst. Chem. Eng. J., 1955, vol. 1, pp. 264–70.

    CAS  Google Scholar 

  24. Handbook of Chemistry and Physics, 55th ed., R. C. Weast, ed., CRC Press, Cleveland, OH, 1974, p. F-49.

    Google Scholar 

  25. B.K. Thomas and J.D. Fray:Metall. Trans. B, 1981, vol. 12B, pp. 559–63.

    CAS  Google Scholar 

  26. V. V. Gubaylovskii, I. A. Kakovskii, and B. D. Khalesov:Izv. Akad. Nauk SSSR Metal., 1973, vol. 6, pp. 106–11.

    Google Scholar 

  27. G. V. Volkova and A. A. Filippov:Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim. Nauk, 1974, vol. 2, pp. 81–84.

    Google Scholar 

  28. D. M. Levins and J. R. Glastonbury:Trans. Inst. Chem. Eng., 1972, vol. 50, pp. 32–41.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vi≈nals, J., Oliveras, J. & Nú≈nez, C. Leaching kinetics of natural cobalt triarsenide in chlorine solutions. Metall Trans B 17, 629–637 (1986). https://doi.org/10.1007/BF02657125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657125

Keywords

Navigation