Skip to main content
Log in

Neutron-induced trapping levels in aluminum gallium arsenide

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Deep level transient spectroscopy (DLTS) measurements have been performed on a variety of AlxGa1-xAs p-n junctions prior to and following a series of fast neutron irradiations at room temperature and subsequent isochronal anneals. In contrast with electron and proton irradiated GaAs, neutron irradiation produces a single, broad featureless DLTS band which is a majority carrier trap in both n and p type material. The characteristics of this neutron-induced trap are relatively independent of growth method, dopant type and concentration. In GaAs, the thermal emission energies of the trap are 0.58 to 0.68 eV depending on the particular junction. These energies increase with Al content to 0.94 eV at 20% Al. The trap introduction rate, which also increases with Al content, is 0.7 cm-1 in GaAs. Isochronal annealing to temperatures as high as 400‡C results in a smaller FWHM of the DLTS band, a shift in the peak to higher temperatures, and a modest decrease in magnitude. Above 400‡C the magnitude decreases rapidly, suggesting a similarity with the antisite defect, AsGa, which has been observed to anneal in this range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Gregory, IEEE Trans. Nuc. Sci.NS-16, no. 6, 53 (1969).

    Article  Google Scholar 

  2. L. C. Kimerling and P. J. Drevinsky, IEEE Trans. Nuc. Sci.NS-18, no. 6, 60 (1971).

    Google Scholar 

  3. H. J. Stein, J. Appl. Phys.39, 5283 (1968).

    Article  CAS  Google Scholar 

  4. V. C. Burkig, J. L. McNichols and W. S. Ginell, J. Appl. Phys.40, 3268 (1969).

    Article  CAS  Google Scholar 

  5. R. J. Chaffin,Microwave Semiconductor Devices: Fundamentals and Radiation Effects (John Wiley, New York, 1972), p. 98.

    Google Scholar 

  6. M. Bertolotti, T. Papa, D. Sette and G. Vitali, J. Appl. Phys.38, 2645 (1967).

    Article  CAS  Google Scholar 

  7. D. V. Lang, J. App. Phys.45, 3023 (1974).

    Article  CAS  Google Scholar 

  8. D. V. Lang, L. C. Kimerling and S. Y. Leung, J. Appl. Phys.47, 3587 (1976).

    Article  CAS  Google Scholar 

  9. A. S. Epstein, S. Share, R. A. Polimadei and A. H. Herzog, IEEE Trans. Nuc. Sci.NS-23, 1654 (1976).

    Google Scholar 

  10. B. L. Gregory and H. H. Sander, IEEE Trans. Nuc. Sci. no. 6, 116 (1967).

    Google Scholar 

  11. R. E. Leadon, IEEE Trans. Nuc. Sci.NS-17, no. 6, 110 (1970).

  12. K. L. Brower,Ion Implantation in Semionductors, 1976, edited by F. Chernow, J. A. Borders, and D. K. Brice (Plenum, New York, 1977), p. 427.

    Google Scholar 

  13. G. M. Martin and S. Makram-Ebeid,12th Inter. Conf. on Defects in Semiconductors, edited by C.A.J. Ammerlaan (North Holland, Amsterdam, 1983).

  14. S. S. Li, W. L. Wang, P. W. Lai, R. Y. Loo, G. S. Kamath and R. C. Knechtll, IEEE Trans, on Electron Devices ED-27, 857 (1980).

    CAS  Google Scholar 

  15. G. Vincent, A. Chantre and D. Bois, J. Appl. Phys.50, 5484 (1979).

    Article  CAS  Google Scholar 

  16. B. R. Gossick, J. Appl. Phys.30, 1214 (1959).

    Article  CAS  Google Scholar 

  17. P. 107 in Ref. 5.

  18. G. C. Osbourn, Phys. Rev. B22, 2898 (1980).

    Article  CAS  Google Scholar 

  19. G. M. Martin, P. Secordel and C. Venger, J. Appl. Phys.53, 8706 (1982).

    Article  CAS  Google Scholar 

  20. R. Worner, U. Kaufman and J. Schneider, Appl. Phys. Lett.40, 141 (1982).

    Article  Google Scholar 

  21. A. Goltzene, B. Meyer and C. Schwab, J. Appl. Phys.54, 3117 (1983).

    Article  CAS  Google Scholar 

  22. G. M. Martin, Appl. Phys. Lett.39, 747 (1981).

    Article  CAS  Google Scholar 

  23. S. Makram-Ebeid, D. Gautard, P. Devillard and G. M. Martin, Appl. Phys. Lett.40, 161 (1982).

    Article  CAS  Google Scholar 

  24. J. Lagowski, H. C. Gatos, J. M. Parsey, K. Wada, M. Kaminska and W. Walukiewicz, Appl. Phys. Lett.40, 342 (1982).

    Article  CAS  Google Scholar 

  25. H. J. Stein, J. Appl. Phys.40, 5300 (1969).

    Article  Google Scholar 

  26. A. Goltzene, B. Meyer and C. Schwab, presented at the 13th International Conf. on Defects in Semiconductors, Aug. 12–17, 1984, Coronado, CA.

  27. B. K. Meyer, D. M. Hoffmann, J. M. Spaeth, and E. Lohse, presented at the 13th international Conf. on Defects in Semiconductors, Aug. 12–17, 1984, Coronado, CA.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, C.E., Zipperian, T.E. & Dawson, L.R. Neutron-induced trapping levels in aluminum gallium arsenide. J. Electron. Mater. 14, 95–118 (1985). https://doi.org/10.1007/BF02656670

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656670

Key words

Navigation