Skip to main content
Log in

Radiation effects on time-dependent deformation: Creep and growth

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Observations of irradiation creep strain as well as irradiation growth strain and related microstructures are reviewed and compared to mechanisms for radiation effects on time-dependent deformation. Composition, microstructure, stress, and temperature affect irradiation creep less than thermal creep. Irradiation creep rates can often dominate thermal creep rates, particularly at low temperatures and low stresses. Irradiation creep mechanisms are classified in two general categories: (1) stress-induced preferential absorption and (2) climb glide. In the former, creep results from dislocation climb, whereas in the latter, creep results from dislocation glide. The effects of irradiation creep on failure modes in nuclear environments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Weertman and J.R. Weertman: inPhysical Metallurgy, R.W. Cahn, ed., North-Holland Publishing Co., Amsterdam, The Netherlands, 1965, pp. 793–820.

    Google Scholar 

  2. P.J. Wray:J. Appl. Phys., 1969, vol. 40, pp. 4018–29.

    Article  CAS  Google Scholar 

  3. M.F. Ashby:Acta Metall., 1972, vol. 20, pp. 887–97.

    Article  CAS  Google Scholar 

  4. F.A. Nichols: inRadiation Damage in Metals, ASM, Metals Park, OH, 1976, pp. 267–94.

    Google Scholar 

  5. Proc. Int. Conf. on Fundamental Mechanisms of Radiation Induced Creep and Growth, G.J.C. Carpenter, C.E. Coleman, and S.R. MacEwen, eds., North-Holland Publishing Company, Amsterdam, The Netherlands, 1980; alsoJ. Nucl. Mater., 1980, vol. 90, pp. 1–321.

    Google Scholar 

  6. Proc. Int. Workshop on Mechanisms of Irradiation Creep and Growth, C.H. Woo and R.J. McElroy, eds., North-Holland Publishing Company, Amsterdam, The Netherlands, 1988; alsoJ. Nucl. Mater., 1988, vol. 159, pp. 1–422.

    Google Scholar 

  7. T.C. Reiley and P. Jung: inInt. Conf: Radiation Effects in Breeder Reactor Structural Materials, AIME, New York, NY, 1977, pp. 295–306.

    Google Scholar 

  8. A. Rogerson:J. Nucl. Mater., 1988, vol. 159, pp. 43–61.

    Article  CAS  Google Scholar 

  9. C.H. Woo:J. Nucl. Mater., 1985, vol. 131, pp. 105–17.

    Article  CAS  Google Scholar 

  10. D.O. Northwood, V. Fidleris, R.W. Gilbert, and G.J.C. Carpenter:J. Nucl. Mater., 1976, vol. 61, pp. 123–30.

    Article  CAS  Google Scholar 

  11. E.H. Lee and L.K. Mansur:Metall. Trans. A, 1990, vol. 21A, pp. 1021–35.

    CAS  Google Scholar 

  12. A.D. Brailsford and R. Bullough:J. Nucl. Mater., 1973, vol. 48, pp. 87–106.

    Article  Google Scholar 

  13. R.J. Puigh, A.J. Lovell, and F.A. Garner:J. Nucl. Mater., 1984, vols. 122–123, pp. 242–45.

    Article  Google Scholar 

  14. P.T. Heald and M.V. Speight:Phil. Mag., 1974, vol. 29, pp. 1075–80.

    Article  CAS  Google Scholar 

  15. W.G. Wolfer and M. Ashkin:J. Appl. Phys., 1975, vol. 46, pp. 547–57.

    Article  Google Scholar 

  16. C.H. Woo:J. Nucl. Mater., 1984, vol. 120, pp. 55–64.

    Article  CAS  Google Scholar 

  17. W.G. Wolfer, J.P. Foster, and F.A. Garner:Nucl. Tech., 1972, vol. 16, pp. 55–63.

    CAS  Google Scholar 

  18. W.G. Wolfer:J. Nucl. Mater., 1980, vol. 90, pp. 175–92.

    Article  CAS  Google Scholar 

  19. K. Krishan and S.K. Ray:J. Nucl. Mater., 1975, vol. 58, pp. 285–92.

    Article  CAS  Google Scholar 

  20. G. Schoeck:J. Appl. Phys., 1958, vol. 29, p. 112.

    Article  CAS  Google Scholar 

  21. J.H. Gittus:Phil. Mag., 1972, vol. 25, pp. 345–54.

    Article  CAS  Google Scholar 

  22. L.K. Mansur:Phil. Mag., 1979, vol. A39, pp. 497–506.

    Google Scholar 

  23. S.N. Buckley: inProperties of Reactor Materials and the Effects of Radiation Damage, D.J. Littler, ed., Butterworth’s, London, 1962, pp. 413–29.

    Google Scholar 

  24. V. Fidleris, R.P. Tucker, and R.B. Actamson: inZirconium in the Nuclear Industry: 7th Int. Symp., R.B. Actamson and L.F.P. Van Swann, eds., ASTM STP 939, ASTM, Philadelphia, PA, 1987, pp. 45–85.

    Google Scholar 

  25. C.C. Dollins:J. Nucl. Mater., 1975, vol. 59, pp. 61–76.

    Article  Google Scholar 

  26. D.R. Harries:J. Nucl. Mater., 1977, vol. 65, pp. 157–73.

    Article  CAS  Google Scholar 

  27. J.L. Straalsund: inRadiation Effects in Breeder Reactor Structural Materials, M.L. Bleiberg and J.W. Bennett, eds., AIME, New York, NY, 1977, pp. 191–207.

    Google Scholar 

  28. D. Mosedale, D.R. Harries, J.A. Hudson, G.W. Lewthwaite, and R.J. McElroy: inRadiation Effects in Breeder Reactor Structural Materials, M.L. Bleiberg and J.W. Bennett, eds., AIME, New York, NY, 1977, pp. 209–28.

    Google Scholar 

  29. V. Fidleris, I.R. Emmerton, and R.D. Delaney:J. Phys. E, 1972, vol. 5, pp. 442–44.

    Article  Google Scholar 

  30. C.H. Henager, Jr., J.L. Brimhall, and E.P. Simonen:J. Nucl. Mater., 1980, vol. 90, pp. 290–96.

    Article  CAS  Google Scholar 

  31. E.P. Simonen and P.L. Hendrick:J. Nucl. Mater., 1979, vols. 85–86, pp. 873–76.

    Article  Google Scholar 

  32. W.G. Wolfer:J. Nucl. Mater., 1980, vol. 90, pp. 175–92.

    Article  CAS  Google Scholar 

  33. C.H. Henager, Jr. and E.P. Simonen: inEffects of Radiation on Materiah: 12th Int. Symp., ASTM STP 870, ASTM, Philadelphia, PA, 1985, pp. 75–97.

    Google Scholar 

  34. R. Bullough and M.R. Haynes:J. Nucl. Mater., 1977, vol. 65, pp. 184–91.

    Article  CAS  Google Scholar 

  35. T. Atkins and R.J. McElroy: inInfluence of Radiation on Material Properties: 13th Int. Symp. (Part I), ASTM STP 955, ASTM, Philadelphia, PA, 1987, pp. 447–65.

    Google Scholar 

  36. E.R. Gilbert and A.J. Lovell: inRadiation Effects in Breeder Reactor Structural Materials, M.L. Bleiberg and J.W. Bennett, eds., AIME, New York, NY, 1977, pp. 269–76.

    Google Scholar 

  37. M.L. Grossbeck: inEffects of Radiation on Materials: 14th Int. Symp., N.H. Packan, R.E. Stoller, and A.S. Kumar, eds., ASTM STP 1046, ASTM, Philadelphia, PA, 1989, in press.

    Google Scholar 

  38. C.H. Henager, Jr., E.P. Simonen, and E.R. Bradley:J. Nucl. Mater., 1983, vol. 117, pp. 250–57.

    Article  CAS  Google Scholar 

  39. J.F. Bates, R.W. Powell, and E.R. Gilbert: inEffects of Radiation on Materials: 10th Int. Symp., D. Kramer, H.R. Brager, and J.S. Perrin, eds., ASTM STP 725, ASTM, Philadelphia, PA, 1981, pp. 713–34.

    Google Scholar 

  40. P. Jung and P.B. Chilson:J. Nucl. Mater., 1987, vol. 149, pp. 1–6.

    Article  CAS  Google Scholar 

  41. J. Nagakawa, V.K. Sethi, and A.P.L. Turner:J. Nucl. Mater., 1981, vols. 103–104, pp. 1275–80.

    Article  Google Scholar 

  42. L.C. Walters, G.L. McVay, and G.D. Hudman: inRadiation Effects in Breeder Reactor Structural Materials, M.L. Bleiberg and J.W. Bennett, eds., AIME, New York, NY, 1977, pp. 277–94.

    Google Scholar 

  43. D.S. Gelles:Metall. Trans. A, 1990, vol. 21A, pp. 1065–71.

    CAS  Google Scholar 

  44. D.S. Gelles, F.A. Garner, and H.R. Brager: inEffects of Radiation on Materials: 10th Int. Symp., D. Kramer, H.R. Brager, and J.S. Perrin, eds., ASTM STP 725, ASTM, Philadelphia, PA, 1981, pp. 735–53.

    Google Scholar 

  45. S. Jitsukawa, Y. Katano, and K. Shiraishi: Japan Atomic Energy Institute, Tokai-mura, Ibaraki-ken, Japan, referenced in F.A. Garner and D.S. Gelles,J. Nucl. Mater., 1988, vol. 159, pp. 286–309.

    Article  CAS  Google Scholar 

  46. E.F. Starken and CM. Walter:J. Nucl. Mater., 1974, vol. 50, pp. 69–82.

    Article  Google Scholar 

  47. R. Bullough and M.H. Wood:J. Nucl. Mater., 1980, vol. 90, pp. 1–21.

    Article  CAS  Google Scholar 

  48. G.J.C. Carpenter and D.O. Northwood:J. Nucl. Mater., 1975, vol. 56, pp. 260–66.

    Article  CAS  Google Scholar 

  49. F.A. Nichols:Annu. Rev. Mater. Sci., 1972, vol. 2, pp. 463–500.

    Article  CAS  Google Scholar 

  50. J.J. Laidler, J.J. Holmes, and J.W. Bennett: inRadiation Effects in Breeder Reactor Structural Materials, M.L. Bleiberg and J.W. Bennett, eds., AIME, New York, NY, 1977, pp. 41–52.

    Google Scholar 

  51. R.J. Puigh and M.L. Hamilton: inInfluence of Radiation on Material Properties: 13th Int. Symp. (Part II), F.A. Gamer, C.H. Henager, Jr., and N. Igata, eds., ASTM STP 956, ASTM, Philadelphia, PA, 1987, pp. 22–29.

    Google Scholar 

  52. C. Wassilew, K. Ehrlich, and H.-J. Bergmann: inInfluence of Radiation on Material Properties: 13th Int. Symp. (Part II), F.A. Garner, C.H. Henager, Jr., and N. Igata, eds., ASTM STP 956, ASTM, Philadelphia, PA, 1987, pp. 30–53.

    Google Scholar 

  53. R.H. Jones:inProc. 2nd lnt. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, J.T.A. Roberts, J.R. Weeks, and G.J. Theus, eds., American Nuclear Society, La Grange Park, IL, 1986, pp. 173–80.

    Google Scholar 

  54. F.P. Ford:Mechanisms of Environmental Cracking in Systems Peculiar to the Power Generation Industry, EPRINP-2589, Electric Power Research Institute, Palo Alto, CA, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Irradiation-Enhanced Materials Science and Engineering” presented as part of the ASM INTERNATIONAL 75th Anniversary celebration at the 1988 World Materials Congress in Chicago, IL, September 2–29, 1988, under the auspices of the Nuclear Materials Committee of TMS-AIME and ASM-MSD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonen, E.P. Radiation effects on time-dependent deformation: Creep and growth. Metall Trans A 21, 1053–1063 (1990). https://doi.org/10.1007/BF02656526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656526

Keywords

Navigation