Skip to main content
Log in

Effect of oxygen on vacancy cluster morphology in metals

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The extensive literature on oxygen chemisorption and solubility in metals is briefly reviewed, with special emphasis on the reduction of surface tension associated with oxygen adsorption. A thermodynamic model based on the adsorption equations of Gibbs and Langmuir is developed to determine the relative stability in the presence of oxygen of the void compared to the dislocation loop and stacking fault tetrahedron. Representative calculations are performed for copper, nickel, and austenitic stainless steel. Atomistic and elastic continuum calculations predict that void formation should not occur in most pure face-centered cubic metals during quenching or irradiation. However, the thermodynamic model predicts that oxygen concentrations of 30 to 1000 appm will stabilize void formation in copper, nickel, and stainless steel. Foils of copper and several Fe-Cr-Ni stainless steels containing various amounts of oxygen have been examined with electron microscopy following ion bombardment. The presence of 30 to 1000 appm O resulted in significant amounts of void formation, whereas no voids were observed in low-oxygen specimens, in agreement with the model predictions. Oxygen introduced by ion implantation was more effective in promoting void formation than residual oxygen. Solutes such as phosphorus in stainless steel reduced the effectiveness of oxygen as a void-stabilizing agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Sigler and D. Kuhlmann-Wilsdorf:Phys. Status Solidi, 1967, vol. 21, pp. 545–56.

    CAS  Google Scholar 

  2. S.J. Zinkle, L.E. Seitzman, and W.G. Wolfer:Phil. Mag. A, 1987, vol. 55, pp. 111–25.

    CAS  Google Scholar 

  3. R.A. Johnson:Phys. Rev., 1966, vol. 152, pp. 629–34.

    CAS  Google Scholar 

  4. M.I. Baskes:Trans. Am. Nucl. Soc., 1977, vol. 27, pp. 320–21.

    Google Scholar 

  5. A.G. Crocker, M. Doneghan, and K.W. Ingle:Phil. Mag. A, 1980, vol. 41, pp. 21–32.

    CAS  Google Scholar 

  6. C.C. Matthai and D.J. Bacon:J. Nucl. Mater., 1985, vol. 135, pp. 173–80.

    CAS  Google Scholar 

  7. N.Q. Lam, N.V. Doan, and L. Dagens:J. Phys. F, 1985, vol. 15, pp. 799–808.

    CAS  Google Scholar 

  8. M.J. Sabochick, S. Yip, and N.Q. Lam:J. Phys. F, 1988, vol. 18, pp. 349–61.

    CAS  Google Scholar 

  9. V.G. Kapinos, Yu.N. Osetskii, and P.A. Platonov:Sov. Phys. Solid State, 1986, vol. 28, pp. 2031–34.

    Google Scholar 

  10. C.J. Bell:Scripta Metall., 1981, vol. 15, pp. 665–68.

    Google Scholar 

  11. V.G. Chudinov and V.l. Protasov:Radiat. Eff., 1984, vol. 81, pp. 83–88.

    CAS  Google Scholar 

  12. R.E. Stoller and G.R. Odette:Phil. Mag. A, 1988, vol. 58, pp. 523–32.

    CAS  Google Scholar 

  13. K. Farrell:Radiat. Eff., 1980, vol. 53, pp. 175–94.

    CAS  Google Scholar 

  14. Lattice Defects in Quenched Metals, R.M.J. Cotterill, M. Doyama, J.J. Jackson, and M. Meshii, eds., Academic Press, New York, NY, 1965.

    Google Scholar 

  15. L.M. Clarebrough, R.L. Segall, and M.H. Loretto:Acta Metall., 1967, vol. 15, pp. 1007–23.

    CAS  Google Scholar 

  16. Y. Shimomura and S. Yoshida:J. Phys. Soc. Jpn., 1967, vol. 22, pp. 319–31.

    CAS  Google Scholar 

  17. K. Urban:Phys. Status Solidi A, 1970, vol. 3, pp. K167–68.

    CAS  Google Scholar 

  18. D.I.R. Norris:Radiat. Eff., 1972, vol. 15, pp. 1–22.

    CAS  Google Scholar 

  19. R.S. Nelson, J.A. Hudson, D.J. Mazey, G.P. Walters, and T.M. Williams: inRadiation-Induced Voids in Metals, J.W. Corbett and L.C. Ianniello, eds., United States Atomic Energy Commission, CONF 710601, Springfield, VA, 1972, pp. 430–45.

    Google Scholar 

  20. S.J. Zinkle, W.G. Wolfer, G.L. Kulcinski, and L.E. Seitzman:Phil. Mag. A, 1987, vol. 55, pp. 127–40.

    CAS  Google Scholar 

  21. L.E. Seitzman, L.M. Wang, G.L. Kulcinski, and R.A. Dodd:J. Nucl. Mater., 1986, vol. 141–143, pp. 738–42.

    Google Scholar 

  22. L.E. Seitzman, G.L. Kulcinski, and R.A. Dodd: inRadiation-Induced Changes in Microstructure, 13th Int. Symp., Part I, ASTM STP 955, F.A. Gamer, N.H. Packan, and A.S. Kumar, eds., ASTM, Philadelphia, PA, 1987, pp. 279–86.

    Google Scholar 

  23. E. Fromm and G. Hörz:Int. Met. Rev., 1980, vol. 25, pp. 269–311.

    CAS  Google Scholar 

  24. C.J. Altstetter:Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 543–53.

    Google Scholar 

  25. K. Wandelt:Surf. Sci. Rep., 1982, vol. 2, pp. 1–121.

    CAS  Google Scholar 

  26. I. Toyoshima and G.A. Somorjai:Catal. Rev.—Sci. Eng., 1979, vol. 19, pp. 105–59.

    CAS  Google Scholar 

  27. Gase und Kohlenstoff in Metallen, E. Fromm and E. Gebhardt, eds., Springer-Verlag, New York, NY, 1976.

    Google Scholar 

  28. R.L. Pastorek and R.A. Rapp:Trans. AIME, 1969, vol. 245, pp. 1711–20.

    CAS  Google Scholar 

  29. J. Takada, S. Yamamoto, S. Kikuchi, and M. Adachi:Metall. Trans. A, 1986, vol. 17A, pp. 221–29.

    CAS  Google Scholar 

  30. J.-W. Park and C.J. Altstetter:Metall. Trans. A, 1987, vol. 18A, pp. 43–50.

    CAS  Google Scholar 

  31. H.E. Schaefer:in Positron Annihilation, P.G. Coleman, S.C. Sharma, and L.M. Diana, eds., North-Holland, Amsterdam, 1982, pp. 369–80.

    Google Scholar 

  32. P.H. Holloway:J. Vac. Sci. Technol., 1981, vol. 18, pp. 653–59.

    CAS  Google Scholar 

  33. J. Haase and H.-J. Kuhr:Surf. Sci., 1988, vol. 203, pp. L695–99.

    CAS  Google Scholar 

  34. Y. Sakisaka, T. Miyano, and M. Onchi:Phys. Rev. B, 1984, vol. 30, pp. 6849–55.

    CAS  Google Scholar 

  35. C. Benndorf, B. Egert, G. Keller, H. Seidel, and F. Thieme:J. Phys. Chem. Solids, 1979, vol. 40, pp. 877–86.

    CAS  Google Scholar 

  36. R.W. Judd, P. Hollins, and J. Pritchard:Surf. Sci., 1986, vol. 171, pp. 643–53.

    CAS  Google Scholar 

  37. P. Hofman, R. Unwin, W. Wyrobisch, and A.M. Bradshaw:Surf. Sci., 1978, vol. 72, pp. 635–44.

    Google Scholar 

  38. W. Jacob, V. Dose, and A. Goldmann:Appl. Phys. A, 1986, vol. 41, pp. 145–50.

    Google Scholar 

  39. Th.M. Hupkens, J.M. Fluit, and A. Niehaus:Surf. Sci., 1986, vol. 165, pp. 327–36.

    CAS  Google Scholar 

  40. S. Hofmann and J. Steffen:Surf. Interface Anal., 1989, vol. 14, pp. 59–65.

    CAS  Google Scholar 

  41. C. Nyberg:Surf. Sci., 1975, vol. 52, pp. 1–9.

    CAS  Google Scholar 

  42. P.R. Norton, P.E. Binder, and T.E. Jackman:Surf. Sci., 1986, vol. 175, pp. 313–24.

    CAS  Google Scholar 

  43. A.G. Baca, L.E. Klebanoff, M.A. Schulz, E. Parapazzo, and D.A. Shirley:Surf. Sci., 1986, vol. 173, pp. 215–33.

    CAS  Google Scholar 

  44. I.P. Batra and L. Kleinman:J. Electron Spectrosc. Relat. Phenom., 1984, vol. 33, pp. 175–241.

    CAS  Google Scholar 

  45. C. Jardin, B.M. Duc, J.P. Gauthier, G. Thollet, and P. Michel:J. Electron Spectrosc. Relat. Phenom., 1980, vol. 19, pp. 213–22.

    CAS  Google Scholar 

  46. J.C. Langevoort, I. Sutherland, L.J. Hanekamp, and P.J. Gellings:Appl. Surf. Sci., 1987, vol. 28, pp. 167–79.

    CAS  Google Scholar 

  47. M. Polak and B. Schiffman:J. Vac. Sci. Technol. A, 1987, vol. 5, pp. 590–92.

    CAS  Google Scholar 

  48. R.J. Fruehan:Trans. TMS-AIME, 1969, vol. 245, pp. 1215–18.

    CAS  Google Scholar 

  49. K. Nishikawa, A. Kusano, K. Ito, and K. Sano:Trans. Iron Steel Inst. Jpn., 1970, vol. 10, pp. 83–88.

    Google Scholar 

  50. E.T. Turkdogan and R.J. Fruehan:Can. Metall. Q., 1972, vol. 11, pp. 371–82.

    CAS  Google Scholar 

  51. M. Hone, S. Houot, and M. Rigaud:Can. Metall. Q., 1974, vol. 13, pp. 619–23.

    CAS  Google Scholar 

  52. S.E. Feldman and J.S. Kirkaldy:Can. Metall. Q., 1974, vol. 13, pp. 625–30.

    CAS  Google Scholar 

  53. S. Ueno, Y. Waseda, and Y.A. Chang:Z. Metallkd., 1988, vol. 79, pp. 435–39.

    CAS  Google Scholar 

  54. V.E. Shevtsov:Russ. Metall., 1979, no. 2, pp. 58–61.

  55. H. Schenck, E. Steinmetz, and P.C.-H. Rhee:Arch. Eisenhüttenwes., 1968, vol. 39, pp. 803–08.

    CAS  Google Scholar 

  56. B.I. Leonovich, G.G. Mikhaylov, and G.A. Khasin:Russ. Metall., 1980, no. 3, pp. 49–53.

  57. P. Pho and H.-J. Eckstein:Neue Hütte, 1980, vol. 6, pp. 218–20.

    Google Scholar 

  58. E.A. Guggenheim:Trans. Faraday Soc., 1940, vol. 36, pp. 397–412.

    CAS  Google Scholar 

  59. R. Defay, I. Prigogine, and A. Bellemans:Surface Tension and Adsorption, John Wiley & Sons, New York, NY, 1966.

    Google Scholar 

  60. J.R. Eriksson:Surf. Sci., 1969, vol. 14, pp. 221–46.

    CAS  Google Scholar 

  61. G.A. Somorjai:Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca, NY, 1981.

    Google Scholar 

  62. Adsorption on Metal Surfaces, J. Benard, ed., Elsevier Science Publishing Company, New York, NY, 1983.

    Google Scholar 

  63. A. Kasama, A. McLean, W.A. Miller, Z. Monta, and M.J. Ward:Can. Metall. Q., 1983, vol. 22, pp. 9–17.

    CAS  Google Scholar 

  64. E.D. Hondros:Acta Metall., 1968, vol. 16, pp. 1377–80.

    CAS  Google Scholar 

  65. B.J. Keene:Int. Mater. Rev., 1988, vol. 33, pp. 1–37.

    CAS  Google Scholar 

  66. E.E. Tret′yakova, E.A. Klimenkov, B.A. Baum, and G.V. Tyagunov:Steel USSR, 1985, vol. 15, pp. 391–92.

    Google Scholar 

  67. F.H. Buttner, E.R. Funk, and H. Udin:J. Phys. Chem., 1952, vol. 56, pp. 657–60.

    CAS  Google Scholar 

  68. R. Sangriorgi, M.L. Muolo, and A. Passerone:Acta Metall., 1982, vol. 30, pp. 1597–1604.

    Google Scholar 

  69. D.R. Stickle, J.P. Hirth, G. Meyrick, and R. Speiser:Metall. Trans. A, 1976, vol. 7A, pp. 71–74.

    CAS  Google Scholar 

  70. E.A. Clark, R. Yeske, and H.K. Birnbaum:Metall. Trans. A, 1980, vol. 11A, pp. 1903–08.

    CAS  Google Scholar 

  71. K. Ogino and H. Taimatsu:J. Jpn. Inst. Met., 1979, vol. 43, pp. 871–76.

    CAS  Google Scholar 

  72. K. Monma and H. Suto:Trans. Jpn. Inst. Met., 1961, vol. 2, pp. 148–53.

    CAS  Google Scholar 

  73. T.E. O’Brien and A.C.D. Chaklader:J. Amer. Ceram. Soc., 1974, vol. 57, pp. 329–32.

    CAS  Google Scholar 

  74. E.D. Hondros and M. McLean: inStructure et Proprietes des Surfaces des Solides, Colloques Int. CNRS, No. 187, M.J. Benard, ed., Centre National de la Recherche Scientifique, Ed. 15, Paris, 1970, pp. 221–29.

    Google Scholar 

  75. C.E. Bauer, R. Speiser, and J.P. Hirth:Metall. Trans. A, 1976, vol. 7A, pp. 75–79.

    CAS  Google Scholar 

  76. M.F. Felsen and P. Regnier:Surf. Sci., 1977, vol. 68, pp. 410–18.

    CAS  Google Scholar 

  77. B. Gallois and C.H.P. Lupis:Metall. Trans. B, 1981, vol. 12B, pp. 549–57.

    CAS  Google Scholar 

  78. Z. Morita and A. Kasama:Trans. Jpn. Inst. Met., 1980, vol. 21, pp. 522–30.

    CAS  Google Scholar 

  79. K. Ogino, S. Hara, T. Miwa, and S. Kimoto:J. Iron Steel Inst. Jpn. (Tetsu-to-Haganè), 1979, vol. 65, pp. 2012–21.

    CAS  Google Scholar 

  80. G. Bernard and C.H.P. Lupis:Surf. Sci., 1974, vol. 42, pp. 61–85.

    CAS  Google Scholar 

  81. G.R. Beiton:Metall. Trans. B, 1976, vol. 7B, pp. 35–42.

    Google Scholar 

  82. T. Utigard and J.M. Toguri:Metall. Trans. B, 1987, vol. 18B, pp. 695–702.

    CAS  Google Scholar 

  83. P. Sahoo, T. DebRoy, and M.J. McNallan:Metall. Trans. B, 1988, vol. 19B, pp. 483–91.

    CAS  Google Scholar 

  84. E. Ricci, A. Passerone, and J.C. Joud:Surf. Sci., 1988, vol. 206, pp. 533–53.

    CAS  Google Scholar 

  85. R. Schmid:Metall. Trans. B, 1983, vol. 14B, pp. 473–81.

    CAS  Google Scholar 

  86. F.H.P.M. Habraken, C.M.A.M. Mesters, and G.A. Bootsma:Surf. Sci., 1980, vol. 97, pp. 264–82.

    CAS  Google Scholar 

  87. L.S. Darken and E.T. Turkdogan:Heterogeneous Kinetics at Elevated Temperatures, G.R. Belton and W.L. Worrell, eds., Plenum Press, New York, NY, 1970, pp. 25–95.

    Google Scholar 

  88. H.J. Grabke and H. Viefhaus:Surf. Sci., 1981, vol. 112, pp. L779–84.

    CAS  Google Scholar 

  89. K.C. Russell:Acta Metall., 1978, vol. 26, pp. 1615–30.

    CAS  Google Scholar 

  90. K.C. Russell:Scripta Metall., 1973, vol. 7, pp. 755–60.

    Google Scholar 

  91. W.G.Wolfer:J. Nucl. Mater., 1984, vol. 122–123, pp. 367–78.

    Google Scholar 

  92. R.L. Sindelar, R.A. Dodd, and G.L. Kulcinski:Effects of Radiation on Materials, 12th Int. Symp., ASTM STP 870, F.A. Garner and J.S. Perrin, eds., ASTM, Philadelphia, PA, 1985, pp. 330–43.

    Google Scholar 

  93. M.F. Wehner and W.G. Wolfer:Phil. Mag. A, 1985, vol. 52, pp. 189–205.

    CAS  Google Scholar 

  94. C.A. English, B.L. Eyre, and J.W. Muncie:Phil. Mag. A, 1987, vol. 56, pp. 453–84.

    CAS  Google Scholar 

  95. V.E. Ostrovskii:Russ. Chem. Rev., 1974, vol. 43, pp. 921–32.

    Google Scholar 

  96. I.G. Murgulescu and M.I. Vass:Rev. Roum. Chim., 1969, vol. 14, pp. 1201–14.

    CAS  Google Scholar 

  97. R.D. Holmes, H.St.C. O’Neill, and R.J. Arculus:Geochim. Cosmochim. Acta, 1986, vol. 50, pp. 2439–52.

    CAS  Google Scholar 

  98. W.R. Tyson:Can. Metall. Q., 1975, vol. 14, pp. 307–14.

    CAS  Google Scholar 

  99. W.F. Egelhoff, Jr.:Phys. Rev. B, 1984, vol. 29, pp. 3681–83.

    CAS  Google Scholar 

  100. I. Savchenko, G.K. Boreskov, A.V. Kalinkin, and A.N. Salanov:Kinet. Catal., 1984, vol. 24, pp. 983–90.

    Google Scholar 

  101. A. Mattsson, I. Panas, P. Siegbahn, U. Wahlgren, and H. Akeby:Phys. Rev. B, 1987, vol. 36, pp. 7389–7401.

    CAS  Google Scholar 

  102. V.G. Venugopal, V.S. Iyer, V. Sundaresh, Z. Singh, P. Prasad, and D.D. Sood:J. Chem. Thermodyn., 1987, vol. 19, pp. 19–25.

    CAS  Google Scholar 

  103. B. Adolphi and H.-J. Müssig:Krist. Tech., 1978, vol. 13, pp. 317–30.

    CAS  Google Scholar 

  104. J. Steffan and S. Hofmann:Surf. Interface Anal., 1988, vol. 11, pp. 617–26; vol. 12, pp. 437-38.

    Google Scholar 

  105. Smithell’s Metal Reference Book, 6th ed., E.A. Brandes, ed., Butterworth’s, Boston, MA, 1983.

    Google Scholar 

  106. O. Kubaschewski and C.B. Alcock:Metallurgical Thermochemistry, 5th ed., Pergamon Press, New York, NY, 1979.

    Google Scholar 

  107. E.H. Lee and L.K. Mansur:Phil. Mag. A, 1990, vol. 107, in press.

  108. S.J. Zinkle and R.L. Sindelar:J. Nucl. Mater., 1988, vol. 155–157, pp. 1196–1200.

    Google Scholar 

  109. M.F. Wehner: Lawrence Livermore National Lab., Livermore, CA, private communication, 1985.

  110. M.B. Lewis, N.H. Packan, G.F. Wells, and R.A. Buhl:Nucl. Instrum. Methods B, 1979, vol. 167, pp. 233–47.

    CAS  Google Scholar 

  111. S.J. Zinkle and R.L. Sindelar:Nucl. Instrum. Methods B, 1986, vol. B16, pp. 154–62.

    CAS  Google Scholar 

  112. L.E. Seitzman, R.A. Dodd, and G.L. Kulcinski:Metall. Trans. A, in press. Preprint available as UWFDM-771, University of Wisconsin-Madison, Madison, WI.

  113. B. Badger, Jr., D.L. Plumton, S.J. Zinkle, R.L. Sindelar, G.L. Kulcinski, R.A. Dodd, and W.G. Wolfer: inEffects of Radiation on Materials, 12th Int. Symp., ASTM STP 870, F.A. Garner and J.S. Perrin, eds., ASTM, Philadelphia, PA, 1985, pp. 297–316.

    Google Scholar 

  114. M.R. Mruzik and K.R. Russell:Surf. Sci., 1977, vol.67, pp. 205–25.

    CAS  Google Scholar 

  115. V.I. Protasov and V.G. Chudinov:Radiat. Eff., 1982, vol. 66, pp. 1–7.

    CAS  Google Scholar 

  116. R. Bullough and R.C. Perrin: inRadiation Damage in Reactor Materials, International Atomic Energy Agency, Vienna, 1969, vol. II, pp. 233–51.

    Google Scholar 

  117. B.N. Singh and A.J.E. Foreman:J. Nucl. Mater., 1988, vol. 155–157, pp. 1258–62.

    Google Scholar 

  118. S. Kojima, Y. Sano, T. Yoshiie, N. Yoshida, and M. Kiritani:J. Nucl. Mater., 1986, vol. 141–143, pp. 763–66.

    Google Scholar 

  119. A.A. Gadalla, W. Jäger, and P. Ehrhart:J. Nucl. Mater., 1986, vol. 137, pp. 73–76.

    Google Scholar 

  120. P. Ehrhart, A.A. Gadalla, W. Jäger, and N. Tsukuda:Acta Metall., 1987, vol. 35, pp. 1929–41.

    CAS  Google Scholar 

  121. K.H. Westmacott:Cryst. Lattice Defects, 1976, vol. 6, pp. 203–08.

    CAS  Google Scholar 

  122. G. Lindner and G. Weyer:Mater. Sci. Forum, 1987, vol. 15–18, pp. 569–74.

    Article  Google Scholar 

  123. L.D. Glowinski:J. Nucl. Mater., 1976, vol. 61, pp. 8–21.

    CAS  Google Scholar 

  124. L.D. Glowinski and C. Fiche:J. Nucl. Mater., 1976, vol. 61, pp. 29–40; L.D. Glowinski, C. Fiche, and M. Lott:J. Nucl. Mater., 1973, vol. 47, pp. 295–310.

    CAS  Google Scholar 

  125. S.J. Zinkle, G.L. Kulcinski, and R.W. Knoll:J. Nucl. Mater., 1986, vol. 138, pp. 46–56.

    CAS  Google Scholar 

  126. D.B. Bullen: Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, 1984.

    Google Scholar 

  127. L.M. Wang, R.A. Dodd, and G.L. Kulcinski:J. Nucl. Mater., 1986, vol. 141–143, pp. 713–17.

    Google Scholar 

  128. J.B. Whitley: Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, 1978.

    Google Scholar 

  129. R.L. Sindelar, G.L. Kulcinski, and R.A. Dodd:J. Nucl. Mater., 1984, vol. 122–123, pp. 246–51.

    Google Scholar 

  130. R.L. Sindelar, G.L. Kulcinski, and R.A. Dodd:J. Nucl. Mater., 1985, vol. 133–134, pp. 544–48.

    Google Scholar 

  131. R.L. Sindelar: Ph.D. Thesis, University of Wisconsin- Madison, Madison, WI, UWFDM-637, 1985.

    Google Scholar 

  132. J.H. Swisher and E.T. Turkdogan:Trans. TMS-AIME, 1967, vol. 239, pp. 426–31.

    CAS  Google Scholar 

  133. J.T. Buswell, S.B. Fisher, J.E. Harbottle, and D.I.R. Noms: inPhysical Metallurgy of Reactor Fuel Elements, J.E. Harris and E.C. Sykes, eds., The Metals Society, London, 1975, pp. 170–74.

    Google Scholar 

  134. L.D. Glowinski and C. Fiche:J. Nucl. Mater., 1976, vol. 61, pp. 22–28.

    CAS  Google Scholar 

  135. V.E. Shevtsov and V.L. Lekhtmets:Russ. Metall., 1977, no. 6, pp. 30–32.

  136. L.K. Mansur, E.H. Lee, P.J. Maziasz, and A.F. Rowcliffe:J. Nucl. Mater., 1986, vol. 141–143, pp. 633–46.

    Google Scholar 

  137. R.E. Stoller and G.R. Odette: inRadiation-Induced Changes in Microstructure, 13th Int. Symp., Part I, ASTM STP 955, F.A. Garner, N.H. Packan, and A.S. Kumar, eds., ASTM, Philadelphia, PA, 1987, pp. 371–92.

    Google Scholar 

  138. R.E. Stoller and G.R. Odette: inRadiation-Induced Changes in Microstructure, 13th Int. Symp., Part I, ASTM STP 955, F.A. Garner, N.H. Packan, and A.S. Kumar, eds., ASTM, Philadelphia, PA, 1987, pp. 358–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Irradiation-Enhanced Materials Science and Engineering” presented as part of the ASM INTERNATIONAL 75th Anniversary celebration at the 1988 World Materials Congress in Chicago, IL, September 25–29, 1988, under the auspices of the Nuclear Materials Committee of TMS-AIME and ASM-MSD

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinkle, S.J., Lee, E.H. Effect of oxygen on vacancy cluster morphology in metals. Metall Trans A 21, 1037–1051 (1990). https://doi.org/10.1007/BF02656525

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656525

Keywords

Navigation