Skip to main content
Log in

Unified theoretical analysis of experimental swelling data for irradiated austenitic and ferritic/martensitic alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Central concepts in the theory of swelling based on defect reactions are reviewed. The critical radius and critical number of gas atoms, which determine the initiation of swelling, and the ratio of the dislocation and cavity sink strengths, which dictates the swelling rate, are demonstrated to be of great utility in the understanding and control of swelling. Over the past two decades, a large data base has been accumulated covering austenitic and ferritic/martensitic alloys, the leading candidate materials for both fusion and fast fission reactor applications. This collection of data naturally serves as the largest source of information on which to develop and test mechanistic understanding of swelling. Over wide ranges in materials and irradiation parameters, including composition, temperature, damage rate, and helium generation rate, we find that apparently divergent swelling behaviors can be explained in a unified manner within the present theoretical framework. Principles for microstructures that insure swelling resistance, together with results from the necessary confirmatory experiments, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Brailsford and R. Bullough:J. Nucl. Mater., 1972, vol. 44, pp. 121–35.

    Article  CAS  Google Scholar 

  2. L.K. Mansur:Kinetics of Nonhomogeneous Process, Gordon R. Freeman, ed., John Wiley & Sons, Inc., New York, NY, 1987, pp. 377–463.

    Google Scholar 

  3. L.K. Mansur, K. Farrell, and J.O. Stiegler:Trans. Am. Nucl. Soc., 1975 Annual Meeting, New Orleans, LA, 1975, vol. 21, pp. 163–64.

    Google Scholar 

  4. L.K. Mansur, E.H. Lee, P.J. Maziasz, and A.F. Rowcliffe:J. Nucl. Mater., 1986, vol. 141–143, pp. 633–46.

    Article  Google Scholar 

  5. L.K. Mansur:Nucl. Technol., 1978, vol. 40, pp. 5–35.

    CAS  Google Scholar 

  6. L.L. Horton and L.K. Mansur:Effects of Radiation on Materials, 12th Int. Symp., F.A. Garner and J.S. Perrin, eds., ASTM STP 870, ASTM, Philadelphia, PA, 1985, pp. 344–62.

    Google Scholar 

  7. V.F. Sears:J. Nucl. Mater., 1971, vol. 39, p. 18.

    Article  CAS  Google Scholar 

  8. G.R. Odette and R.E. StollenJ. Nucl. Mater., 1984, vol. 122–123, pp. 514–19.

    Article  Google Scholar 

  9. M.R. Hayns, M.H. Wood, and R. Bullough:J. Nucl. Mater., 1978, vol. 75, pp. 241–50.

    Article  CAS  Google Scholar 

  10. J.R. Townsend:J. Nucl. Mater., 1982, vol. 108–109, pp. 544–49.

    Article  Google Scholar 

  11. R.E. Stoller and G.R. Odette:Effects of Radiation on Materials, 11th Conf., H.R. Brager and J.S. Perrin, eds., ASTM STP 782, ASTM, Philadelphia, PA, 1982, pp. 275–94.

    Google Scholar 

  12. K.C. Russell:Acta Metall., 1971, vol. 19, p. 753.

    Article  CAS  Google Scholar 

  13. J. Katz and H. Widersich:J. Chem. Phys., 1971, vol. 55, p. 1414.

    Article  CAS  Google Scholar 

  14. L.K. Mansur and W.A. Coghlan:J. Nucl. Mater., 1983, vol. 199, pp. 1–25.

    Article  Google Scholar 

  15. R.E. Stoller and G.R. Odette:Radiation-Induced Changes in Microstructure, 13th Int. Symp. (Part I), F.A. Garner, N.H. Packan, and A.S. Kumar, eds., ASTM STP 955, ASTM, Philadelphia, PA, 1987, pp. 371-92.

    Google Scholar 

  16. H.T. Wollenberger: inPhysical Metallurgy, R.W. Cahn and P. Haasen, eds., Elsevier Science Publishers, New York, NY, 1983, ch. 17.

    Google Scholar 

  17. R. Bullough, M.H. Wood, and E.A. Little:Effects of Radiation on Materials, 10th Conf., David Kramer, H.R. Brager, and J.S. Perrin, eds., ASTM STP 725, ASTM, Philadelphia, PA, 1981, pp. 593–609.

    Google Scholar 

  18. D.S. Gelles:J. Nucl. Mater., 1982, vol. 108–109, pp. 515–26.

    Article  Google Scholar 

  19. W.A. Coghlan and L.K. Mansur:J. Nucl. Mater., 1984, vol. 122–123, pp. 495–501.

    Article  Google Scholar 

  20. P.J. Maziasz:J. Nucl. Mater., 1984, vol. 122–123, pp. 427–86.

    Google Scholar 

  21. M. Itoch, S. Onose, and S. Yuhara:Radiation-Induced Changes in Microstructure, 13th Symp. (Part I), F.A. Gamer, N.H. Packan, and A.S. Kumar, eds., ASTM STP 955, ASTM, Philadelphia, PA, 1987, pp. 114–25.

    Google Scholar 

  22. E.H. Lee and N.H. Packan:Effects of Radiation on Materials, 14th Int. Symp., Andover, MA, 1988, ASTM STP 1046.

  23. M.B. Lewis and K. Farrell:Nucl. Instrum. Methods Phys. Res., 1986, vol. B16, pp. 163–70.

    CAS  Google Scholar 

  24. T.A. Gabriel, B.L. Bishop, and F.W. Wiffen:Nucl. Technol., 1978, vol. 38, pp. 427–33.

    CAS  Google Scholar 

  25. E.H. Lee and L.K. Mansur:Phil. Mag., in press.

  26. S.J. Zinkle and E.H. Lee:Metall. Trans. A, 1990, vol. 21A, pp. 1037–51.

    CAS  Google Scholar 

  27. A.D. Brailsford and L.K. Mansur:J. Nucl. Mater., 1981, vol. 103–104, pp. 1403–08.

    Article  Google Scholar 

  28. E.H. Lee and L.K. Mansur:J. Nucl. Mater., 1986, vol. 141–143, pp. 695–702.

    Article  Google Scholar 

  29. L.K. Mansur:Phil. Mag. A, 1981, vol. 44 (4), p. 867.

    Article  CAS  Google Scholar 

  30. E.H. Lee, A.F. Rowcliffe, and L.K. Mansur:J. Nucl. Mater., 1981, vol. 103–104, pp. 1475–80.

    Article  Google Scholar 

  31. E.H. Lee and L.K. Mansur:Phil. Mag. A, 1985, vol. 52 (4), pp. 493–508.

    Article  CAS  Google Scholar 

  32. W.G. Johnston, T. Lauritzen, J.H. Rosolowski, and A.M. Turkalo:Properties of Reactor Structural Alloys after Neutron or Particle Irradiation, ASTM STP 570, ASTM, Philadelphia, PA, 1975, pp. 525–42.

    Google Scholar 

  33. W.K. Appleby, D.W. Sandusky, and U.E. Wolff:Radiation-Induced Voids in Metals, Proc. Int. Conf., Albany, NY, June 1971, J.W. Corbett and L.C. Ianniello, eds., AEC 26 Symp. Ser., USAEC Technical Information Center, Oak Ridge, TN, Apr. 1972, pp. 156–73.

    Google Scholar 

  34. N.H. Packan and K. Farrell:J. Nucl. Mater., 1979, vol. 85–86, pp. 677–81.

    Article  Google Scholar 

  35. P.J. Maziasz:J. Nucl. Mater., 1982, vol. 108–109, pp. 359–84.

    Article  Google Scholar 

  36. P.J. Maziasz:Effects of Helium Content on Microstructural Development in Type 316 SS under Neutron Irradiation, ORNL-6121, Nov. 1985, p. 132.

  37. J.A. Sprague, J.E. Westmoreland, F.A. Smidt, Jr., and P.R. Malmberg:Properties of Reactor Structural Alloys after Neutron or Particle Irradiation, ASTM STP 570, ASTM, Philadelphia, PA, 1975, pp. 505–24.

    Google Scholar 

  38. J.E. Westmoreland, P.R. Malmberg, J.A. Sprague, and F.A. Smidt, Jr.:Radiat. Eff., 1975, vol. 26, p. 1.

    Article  CAS  Google Scholar 

  39. F.A. Smidt, J.R. Reed, and J.A. Sprague:Radiation Effects in Breeder Reactor Structural Materials, Int. Conf., Scottsdale, AZ, June 1977, M.L. Bleiberg and J.W. Bennett, eds., AIME, New York, NY, 1977, pp. 337–46.

    Google Scholar 

  40. P.J. Maziasz:Effects of Helium Content on Microstructural Development in Type 316 SS under Neutron Irradiation, ORNL-6121, Nov. 1985, p. 109.

  41. M.P. Tanaka, S. Hamada, A. Hishinuma, and P.J. Maziasz:J. Nucl. Mater., 1988, vol. 155–157, pp. 801–05.

    Article  Google Scholar 

  42. S. Hamada, P.J. Maziasz, M.P. Tanaka, M. Suzuki, and A. Hishinuma:J. Nucl. Mater., 1988, vol. 155–157, pp. 838–44.

    Article  Google Scholar 

  43. E.H. Lee and L.K. Mansur: Oak Ridge National Laboratory, Oak Ridge, TN, unpublished research, 1989.

  44. D.S. Gelles:Radiation-Induced Changes in Microstructure, 13th Int. Symp. (Part I), F.A. Garner, N.H. Packan, and A.S. Kumar, eds., ASTM STP 995, ASTM, Philadelphia, PA, 1987, pp. 560–87.

    Google Scholar 

  45. F.A. Smidt, Jr., P.R. Malmberg, J.A. Sprague, and J.E. Westmoreland:Irradiation Effects on the Microstructure and Properties of Metals, ASTM STP 611, ASTM, Philadelphia, PA, 1976, pp. 227–41.

    Google Scholar 

  46. E.A. Little and D.A. Stow:Mater. Sci., Mar. 1980, pp. 89-94.

  47. J.M. Vitek and R.L. Klueh:J. Nucl. Mater., 1984, vol. 122–123, pp. 245–59.

    Google Scholar 

  48. J.M. Vitek and R.L. Klueh:Proc. Topical Conf. on Ferritic Alloys for Use in Nuclear Energy Technologies, Snowbird, UT, 1983, TMS, Warrendale, PA, 1984, pp. 551–58.

    Google Scholar 

  49. K. Farrell and E.H. Lee:Effects of Radiation on Materials, 12th Int. Symp., F.A. Garner and J.S. Perrin, eds., ASTM STP 870, ASTM, Philadelphia, PA, 1985, pp. 383–93.

    Google Scholar 

  50. P.J. Maziasz and R.L. Klueh:Metall. Trans. A, in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the symposium “Irradiation-Enhanced Materials Science and Engineering” presented as part of the ASM INTERNATIONAL 75th Anniversary celebration at the 1988 World Materials Congress in Chicago, IL, September 25–29, 1988, under the auspices of the Nuclear Materials Committee of TMS-AIME and ASM-MSD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E.H., Mansur, L.K. Unified theoretical analysis of experimental swelling data for irradiated austenitic and ferritic/martensitic alloys. Metall Trans A 21, 1021–1035 (1990). https://doi.org/10.1007/BF02656524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656524

Keywords

Navigation