Skip to main content
Log in

Solidification and solid-state transformation mechanisms in Si alloyed high-chromium white cast irons

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Chromium white cast irons are widely used in environments where severe abrasion resistance is a dominant requirement. To improve the wear resistance of these commercially important irons, the United States Bureau of Mines and CSIRO Australia are studying their solidification and solid-state transformation kinetics. A ternary Fe-Cr-C iron with 17.8 wt pct (pct) Cr and 3.0 pct C was compared with commercially available irons of similar Cr and C contents with Si contents between 1.6 and 2.2 pct. The irons were solidified and cooled at rates of 0.03 and 0.17 K · s-1 to 873 K. Differential thermal analysis (DTA) showed that Si depresses the eutectic reaction temperature and suggests that is has no effect upon the volume of eutectic carbides formed during solidification. Microprobe analysis revealed that austenite dendrites within the Si alloyed irons cooled at 0.03 and 0.17 K·s-1 had C and Cr contents that were lower than those of dendrites within the ternary alloy cooled at the same cooling rate and a Si alloyed iron that was water quenched from the eutectic temperature. These lower values were shown by image analysis to be the result of both solid-state growth (coarsening) of the eutectic carbides and some secondary carbide formation. Hardness measurements in the as-cast condition and after soaking in liquid nitrogen suggest an increase in the martensite start temperature as the Si content was increased. It is concluded that Si’s effect on increasing the size and volume fraction of eutectic carbides and increasing the matrix hardness should lead to improved wear resistance over regular high-chromium white cast irons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E. Diesburg and F. Borik:Symp. Materials for the Mining Industry, R.Q. Barr, ed., Climax Molybdenum, Vail, CO, 1974, pp. 15–41.

    Google Scholar 

  2. R. Blickensderfer, J.H. Tylczak, and G. Laird II:Wear of Materials, K.C. Ludema, ed., 1989, vol. 1, pp. 175-82.

  3. G. Laird:Trans. Am. Foundry men’s Soc., 1988, vol. 96, pp. 799–806.

    CAS  Google Scholar 

  4. P.J. Provias:Can. Min. Metall. Bull., 1965, vol. 58 (641), pp. 923–30.

    CAS  Google Scholar 

  5. J.L. Parks:Trans. Am. Foundrymen’s Soc., 1978, vol. 86, pp. 97–102.

    Google Scholar 

  6. Z. Glowacki, J. Baer, and D. Senczyk:Hutnik, 1965, vol. 32, pp. 399–404.

    Google Scholar 

  7. V.G. Rivlin:Int. Met. Rev., 1984, vol. 29, pp. 299–328.

    CAS  Google Scholar 

  8. G. Laird, R.R. Brown, and R.L. Nielsen:Mater. Sci. Technol., 1991, vol. 7, pp. 631–42.

    CAS  Google Scholar 

  9. G.L.F. Powell:Met. Forum, 1980, vol. 3, pp. 37–46.

    CAS  Google Scholar 

  10. Y. Matsubara, K. Ogi, and K. Matsuda:Trans. Am. Foundrymen’s Soc., 1981, vol. 89, pp. 183–96.

    CAS  Google Scholar 

  11. K. Ogi, Y. Matsubara, and K. Matsuda:Trans. Am. Foundrymen’s Soc., 1981, vol. 89, pp. 197–204.

    CAS  Google Scholar 

  12. F. Maratray and R. Usseglio-Nanot:Atlas of Transformation Characteristics of Cr and Cr-Mo White Irons, 1971, Climax Molybdenum S.A., Paris, France.

    Google Scholar 

  13. G. Laird II:Trans. Am. Foundrymen’s Soc., 1991, vol. 99, pp. 339–57.

    CAS  Google Scholar 

  14. G.L.F. Powell and G. Laird II:J. Mater. Sci., 1992, vol. 27, pp. 29–35.

    Article  CAS  Google Scholar 

  15. J.T.H. Pearce:Trans. Am. Foundrymen’s Soc., 1984, vol. 92, pp. 599–622.

    CAS  Google Scholar 

  16. J. Dodd and J.L. Parks:AFS Int. Cast Metals J., 1980, vol. 5, pp. 47–54.

    Google Scholar 

  17. E.C. Bain, R.H. Aborn, and J.H.B. Rutherford:Trans. Am. Soc. Steel Treating, 1933, vol. 21, pp. 481–509.

    CAS  Google Scholar 

  18. T.E. Norman: U.S. Patent No. 4,547,221, 1985.

  19. Mats Waldenström:Metall. Trans. A, 1977, vol. 8A, pp. 1963–77.

    Google Scholar 

  20. R.W. Heine and P.C. Rosenthal:Principles of Metal Casting, McGraw-Hill, New York, NY, 1955, p. 520.

    Google Scholar 

  21. R.W. Heine:AFS Cast Met. Res. J., 1971, vol. 7, pp. 49–54.

    CAS  Google Scholar 

  22. J.F. Janowak and R.B. Gundlach:Trans. Am. Foundrymen’s Soc., 1982, vol. 90, pp. 847–63.

    CAS  Google Scholar 

  23. A.A. Zhukov:Met. Sci., 1978, vol. 12, pp. 521–24.

    CAS  Google Scholar 

  24. Robert Benz, John F. Elliott, and John Chipman:Metall. Trans., 1974, vol. 5, pp. 2235–40.

    Article  CAS  Google Scholar 

  25. J. Shen and Q.D. Zhou:Cast Metals, 1988, vol. 1, pp. 79–85.

    Google Scholar 

  26. C. Kim:J. Heat Treating, 1979, vol. 1, pp. 45–51.

    Google Scholar 

  27. C.Y. Kung and J.J. Rayment:Metall. Trans. A, 1982, vol. 13A, pp. 328–31.

    CAS  Google Scholar 

  28. K.W. Andrews:J. Iron Steel Inst., 1965, vol. 203, p. 721–27.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laird, G., Powell, G.L.F. Solidification and solid-state transformation mechanisms in Si alloyed high-chromium white cast irons. Metall Trans A 24, 981–988 (1993). https://doi.org/10.1007/BF02656520

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656520

Keywords

Navigation