Skip to main content
Log in

Standard enthalpies of formation of NbB2, MoB, and ReB2 by high-temperature direct synthesis calorimetry

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The standard enthalpies of formation of NbB2, MoB, and ReB2 have been determined by high-temperature direct synthesis calorimetry at 1473 ± 2 K. The results are compared with data reported in the literature for NbB2 and MoB and with predicted values for the three compounds derived from Miedema’s semiempirical model.[8,9] A systematic plot is presented which summarizes enthalpy of formation data for a wide range of 3d, 4d, and 5d transition metal borides studied experimentally in this laboratory. This plot shows that the trends among the 3d, 4d, and 5d borides exhibit important similarities. Thus, all three families show a well-defined maximum in --ΔH° f at the Ti, Zr, Hf group, and the trends to lower values after the maximum are very similar for the 3d, 4d, and 5d sets. Usually, the 3d compounds show the most exothermic enthalpies of formation. With few exceptions, the values tend to decrease systematically from 3d to 4d to 5d metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.E. Spear: J. Less-Common Met. 1976, vol. 47, pp. 195–201.

    Article  CAS  Google Scholar 

  2. L. Topor and O.J. Kleppa:High Temp. Sci., 1986, vol. 22, pp. 139–44.

    CAS  Google Scholar 

  3. S.V. Meschel and O.J. Kleppa:J. Chim. Phys., in press.

  4. S.V. Meschel and O.J. Kleppa:Metall. Trans. A, 1991, vol. 22A, pp. 1680–83.

    CAS  Google Scholar 

  5. O.J. Kleppa and L. Topor:J. Less-Common Met., 1985, vol. 106, pp. 269–76.

    Article  CAS  Google Scholar 

  6. L. Topor and O.J. Kleppa:J. Chem. Thermodyn, 1984, vol. 16, pp. 993–1002.

    Article  CAS  Google Scholar 

  7. S.V. Meschel and O.J. Kleppa:J. Alloys Compounds, 1991, vol. 177, pp. 159–66.

    Article  CAS  Google Scholar 

  8. A.K. Niessen and FR. de Boer:J. Less-Common Met., 1981, vol. 82, pp. 75–80.

    Article  CAS  Google Scholar 

  9. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen:Cohesion in Metals. Transition Metal Alloys, Elsevier Science Publishing, New York, NY, 1988.

    Google Scholar 

  10. O.J. Kleppa and L. Topor:Thermochim. Acta, 1989, vol. 139, pp. 291–97.

    Article  CAS  Google Scholar 

  11. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman:Selected Values of the Thermodynamic Properties of the Elements, ASM Metals Park, OH, 1973, p. 154.

    Google Scholar 

  12. Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds. ASM, Materials Park, OH, 1990.

    Google Scholar 

  13. R. Kiessling:Acta Chem. Scand., 1947, vol. 1, pp. 893–916.

    Article  CAS  Google Scholar 

  14. K.I. Portnoi and V.M. Romashov:Sov. Powder Metall. Met. Ceram., 1972, vol. 11, pp. 378–84.

    Article  Google Scholar 

  15. K.I. Portnoi and V.M. Romashov:Sov. Powder Metall. Met. Ceram., 1968, vol. 2, pp. 112–4.

    Article  Google Scholar 

  16. V.C. Neshpor, Y.B. Paderno, and G.V. Samsonov:Dokl. Akad. Nauk, 1958, vol. 118, pp. 515–17.

    CAS  Google Scholar 

  17. E.P. Krpichev, Yu, I. Rubtsov, T.V. Sorokina, and V.K. Prokudina:Russ. J. Phys. Chem., 1979, vol. 53, pp. 1128–30.

    Google Scholar 

  18. F.D. Rossini, D.D. Wagman, W.H. Evans, S. Levine, and I. Yaffe:Selected Values of Thermodynamic Properties., NBS Circular 500, Part 1, Washington, DC, 1961, p. 313.

    Google Scholar 

  19. H.L. Johnston, H.N. Hersh, and E.C. Kerr:J. Am. Chem. Soc., 1951, vol. 73, pp. 1112–7.

    Article  CAS  Google Scholar 

  20. E.J. Huber: 5th Quarterly Report, 1963, AVCO-SR-63-183.

  21. L.A. Reznitskii:Russ. J. Phys. Chem., 1967, vol. 41, pp. 612–14.

    Google Scholar 

  22. L. Brewer and H. Haraldsen:J. Electrochem. Soc., 1955, vol. 102, pp. 399–406.

    Article  CAS  Google Scholar 

  23. G.V. Samsonov:Zh. Fiz. Khim., 1956, vol. 30, pp. 2057–60.

    CAS  Google Scholar 

  24. G.K. Johnson, E. Greenberg, J.L. Margrave, and W.N. Hubbard:J. Chem. Eng. Data, 1967, vol. 12, pp. 597–600.

    Article  CAS  Google Scholar 

  25. E. Storms and B. Muller:J. Phys. Chem., 1977, vol. 81, pp. 318–24.

    Article  CAS  Google Scholar 

  26. G.K. Johnson, E. Greenberg, J.L. Margrave, and W.N. Hubbard:J. Chem. Eng. Data, 1967, vol. 12, pp. 137–41.

    Article  CAS  Google Scholar 

  27. L. Topor and O.J. Kleppa:J. Chem. Thermodyn., 1985, vol. 17, pp. 109–16.

    Article  CAS  Google Scholar 

  28. L. Topor and O.J. Kleppa:J. Chem. Thermodyn., 1985, vol. 17, pp. 1003–16.

    Article  CAS  Google Scholar 

  29. O.J. Kleppa and S. Sato:J. Chem. Thermodyn., 1982, vol. 14, pp. 133–143.

    Article  CAS  Google Scholar 

  30. S. Sato and O.J. Kleppa:Metall. Trans. B, 1982, vol. 13B, pp. 251–57.

    CAS  Google Scholar 

  31. C.D. Glatt, Jr., A.R. Williams, and V.L. Moruzzi:Phys. Rev. B, 1983, vol. 27, pp. 2005–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meschel, S.V., Kleppa, O.J. Standard enthalpies of formation of NbB2, MoB, and ReB2 by high-temperature direct synthesis calorimetry. Metall Trans A 24, 947–950 (1993). https://doi.org/10.1007/BF02656515

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656515

Keywords

Navigation