Skip to main content

Physical modeling of liquid/liquid mass transfer in gas stirred ladles


Several of the metallurgical reactions occurring in gas stirred steel ladles are controlled by liquid phase mass transfer between the metal and slag. In order to calculate the rate of these reactions, information about the two phase mass transfer parameter is necessary. The mass transfer between two immiscible liquids, oil and water simulating slag and steel, respectively, was measured in a scale model of a ladle. The mass transferred species was thymol which has an equilibrium partition ratio between oil and water similar to that for sulfur between slag and metal. The mass transfer rate was measured as a function of gas flow rate, tuyere position and size, method of injection, oil viscosity, and oil/water volume ratio. In addition, mixing times in the presence of the oil layer and mass transfer coefficient for the dissolution of solid benzoic acid rods were measured. The results show that there are three gas flow rate regimes in which the dependence of mass transfer on gas flow rate is different. At a critical gas flow rate, the oil layer breaks into droplets which are entrained into the water, resulting in an increase in the two phase interfacial area. This critical gas flow rate was found to be a function of tuyere position, oil volume, densities of two phases, and interfacial tension. Two phase mass transfer for a lance and a tuyere was found to be the same for the same stirring energy in low energy regions regardless of lance depth. Mass transfer is faster for a center tuyere as compared to an offcenter tuyere, but mixing times are smaller for the offcenter tuyere. From the results obtained, the optimum stirring conditions for metallurgical reactions are qualitatively discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Szekely, H. J. Wang, and K. M. Kiser:Metall. Trans. B, 1976, vol. 7B, pp. 287–95.

    Article  CAS  Google Scholar 

  2. 2.

    N. El-Kaddah and J. Szekely:Scaninject I, #3, MEFOS and Jernkontoret, June 1977, Luleå, Sweden.

  3. 3.

    T. DebRoy, A. K. Majumdar, and D. B. Spalding:Appl. Math. Modelling, 1978, vol. 2, pp. 146–50.

    Article  Google Scholar 

  4. 4.

    J. McKelliget, M. Cross, R. Gibson, and J. Brimacombe:Heat and Mass Transfer in Metallurgical Systems, D. B. Spalding and N. H. Afghan, eds., Hemisphere Pub. Co., New York, NY, 1981, pp. 349–72.

    Google Scholar 

  5. 5.

    C. Aldham, N. Markatos, and M. Cross:Proc. of Int. Conf. on Proc. Modelling, Tesside Politechnic, Cleveland, U.K., May 1982.

  6. 6.

    R. I. L. Guthrie:Iron and Steel Maker, Jan. 1982, pp. 41–45.

  7. 7.

    Y. Sahai and R. I. L. Guthrie:Metall. Trans. B, 1982, vol. 13B, pp. 193–202.

    Article  CAS  Google Scholar 

  8. 8.

    Y. Sahai and R. I. L. Guthrie:Metall. Trans. B, 1982, vol. 13B, pp. 203–11.

    Article  CAS  Google Scholar 

  9. 9.

    S. Asai, M. Kawachi, and I. Muchi:Scaninject III, #12, MEFOS and Jernkontoret, June 1983, Luleå, Sweden.

  10. 10.

    M. Sano and K. Mori:Trans. ISIJ, 1983, vol. 23, pp. 169–75.

    Google Scholar 

  11. 11.

    S. Asai, T. Okamoto, J. He, and I. Muchi:Trans. ISIJ, 1983, vol. 23, pp. 43–50.

    Google Scholar 

  12. 12.

    R. Kaiyuan, Z. Aiqi, and Y. Shuqin:Scaninject III, #42, MEFOS and Jernkontoret, June 1983, Luleå, Sweden.

  13. 13.

    D. Mazumdar: Ph.D. Thesis, 1985, McGill Univ., Montreal, PQ, Canada.

  14. 14.

    O. Haida, T. Emi, S. Yamada, and F. Sudo:Scaninject II, #20, MEFOS and Jernkontoret, June 1980, Luleå, Sweden.

  15. 15.

    Q. Ying, L. Yun, and L. Liu:Scaninject III, #21, MEFOS and Jernkontoret, June 1983, Luleå, Sweden.

  16. 16.

    I. Sawada and T. Ohashi,Tetsu-to-Hagané, 1984, vol. 70, p. S161.

    Google Scholar 

  17. 17.

    Y. Ohga, S. Taniguchi, and J. Kikuchi:Tetsu-to-Hagané, 1985, vol. 71, p. S897.

    Google Scholar 

  18. 18.

    M. Hirasawa, K. Mori, M. Sano, Y. Shimada, and Y. Okazaki:Tetsuto-Hagané, 1985, vol. 71, p. S898.

    Google Scholar 

  19. 19.

    S. Endo and M. Hasegawa:Tetsu-to-Hagané, 1985, vol. 71, p. S899.

    Google Scholar 

  20. 20.

    M. Ozawa, S. Nakayama, and T. Yajima:Iron and Steel Maker, Nov. 1984, pp. 22–23.

  21. 21.

    J. Ishida, K. Yamaguchi, S. Sugiura, N. Demukai, and A. Notoh:Denki-Seiko, 1981, vol. 52(1), pp. 2–8.

    Google Scholar 

  22. 22.

    G. Carlsson, M. Bramming, and C. Wheeler: 5th International Iron and Steel Congress, April 6–9, 1986, Washington, DC.

  23. 23.

    K. Nakanishi, Y. Kato, T. Nozaki, and T. Emi:Tetsu-to-Hagané, 1980, vol. 66, pp. 1307–16.

    CAS  Google Scholar 

  24. 24.

    R. Matway: unpublished work, Carnegie Mellon Univ., Pittsburgh, PA, 1986.

  25. 25.

    L. Heaslip, I. Sommervill, and W. Wilson:Iron and Steel Maker, Oct. 1985, pp. 37–39.

  26. 26.

    T. Lehner: Proc. Symp. “Ladle Treatment of Carbon Steel”, McMaster Univ., Hamilton, ON, Canada, May 1979.

  27. 27.

    T. Hsiao, T. Lehner, and B. Kjellberg:Scand. J. of Metallurgy, 1980, vol. 9, pp. 105–10.

    CAS  Google Scholar 

  28. 28.

    J. Billington and K. Gregory:Radex-Rundschau, Heft 1/2, 1981, pp. 368–73.

    Google Scholar 

  29. 29.

    R. Calabrese, T. Chang, and P. Dang:AIChE Journal, 1986, vol. 32, No. 4, pp. 657–66.

    Article  CAS  Google Scholar 

  30. 30.

    C. Wang and R. Calabrese:AIChE Journal, 1986, vol. 32, No. 4, pp. 667–76.

    Article  CAS  Google Scholar 

  31. 31.

    F. Richardson, D. Robertson, and B. Staples: Proceedings of “The Darken Conference”, U.S. Steel, Monroeville, PA, August 1976.

  32. 32.

    H. Gaye and J. Grosjean: Steelmaking Conf. AIME, March 1982, Pittsburgh, PA.

  33. 33.

    P. Riboud, J. Motte, D. Senaneuch, and M. Jeanneau: Symp. of “Ladle Treatment of Carbon Steel”, McMaster Univ., Hamilton, ON, Canada, May 1979.

  34. 34.

    R. Reid, J. Prausnitz, and T. Sherwood:The Properties of Gases and Liquids, 3rd ed., McGraw-Hill Company, New York, NY, 1977.

    Google Scholar 

Download references

Author information



Additional information

SEON-HYO Kim, formerly Graduate Student in the Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, SH., Fruehan, R.J. Physical modeling of liquid/liquid mass transfer in gas stirred ladles. Metall Mater Trans B 18, 381–390 (1987).

Download citation


  • Mass Transfer Coefficient
  • Mass Transfer Rate
  • Mass Transfer Parameter
  • Liquid Phase Mass Transfer
  • Lance Injection