Advertisement

Zentralblatt für Didaktik der Mathematik

, Volume 34, Issue 5, pp 204–211 | Cite as

Mastering by the teacher of the instrumental genesis in CAS environments: necessity of intrumental orchestrations

  • Dominique Guin
  • Luc Trouche
Analyses

Abstract

In this article, we study didactic phenomena identified in integration experiments within our classes, CAS (implemented in calculators). From this study, we show the interest of an instrumental approach to understand the influence of tools on the mathematical approach and on the building of student's knowledge: through a process—instrumental genesis—a calculator becomes a mathematical work tool; this process depends on the tool's constraints and potentialities, on students' knowledge, and on the class' work situations. To analyze the differentiation of instrumental genesis, we then have taken interest in students' behaviour and we propose a method enabling us to constitute a typology of extreme behaviour in environments of symbolic calculators. To take the variety of these genesis into account, the professor needs a particular organization of space and time of the study in the class. We suggest the notion of instrumental orchestration to name this organization. We demonstrate how this notion gives a better definition of the objectives, the configurations and the exploitation modes of different arrangements which aim at constituting coherent instrument systems for each student and for the class.

ZDM-Classification

C30 C60 C70 D30 D40 I40 U70 

Ungang der LehrerInnen mit der instrumentalen Genese in CAS-Umgebungen: Notwendigkeit von instrumentalen Orchestrierungen

Kurzreferat

In diesem Beitrag werden didaktische Phänomene diskutiert, die bei der Integration von CAS (implementiert in Taschenrechnern) in den Unterricht auftreten. Basierend auf diesen Untersuchungen wird der Nutzen eines instrumentalen Zugangs für das Verständnis des Einflusses von Werkzeugen auf mathematische Zugänge und für den Aufbau von SchülerInnenwissen gezeigt: durch einen Prozess—instrumentale Genese—wird ein Taschenrechner zu einem mathematischen Werkzeng; dieser Prozess ist abhängig von den Grenzen und Potenzialen dieses Werkzeugs, vom Wissen der SchülerInnen und von den Arbeitssituationen im Unterricht. Für die Analyse von Unterschieden in der instrumentalen Genese wird dann das Verhalten von SchülerInnen untersucht und eine Methode vorgeschlagen, die es ermöglicht, eine Typologie extremer Arbeitsweisen in Umgebungen symbolischer Rechner anzugeben. Eine Berücksichtingung der unterschiedlichen instrumentalen Genesen erfordert vom Lehrer bzw. der Lehrerin eine besondere Organisation von Raum und Zeit der Arbeit im Unterricht. Es wird vorgeschlagen diese Organisation als instrumentale Orchestrierung zu bezeichnen. In der Folge wird gezeigt, wie eine solche Vorstellung eine bessere Definition der Ziele, der Strukturen und der Umsetzungsformen verschiedener Anordnungen ermöglicht, die darauf abzielen, für jede/n SchülerIn kohärente Systeme von Instrumenten zu schaffen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artigue, M. (1997): Le logiciel DERIVE comme révélateur de phénomènes didactiques liés à l'utilisation d'environnements informatiques pour l'apprentissage.—In: Educational Studies in Mathematics 33 (2), p. 133–169.Google Scholar
  2. Artigue, M. (2000): Didactic engineering and the complexity of learning processes in classroom situations.—In: C. Bergsten, G. Dahland, B. Grevholm (eds), Proceedings of the MADIF2 0 Conference, Gothenburg, janvier 2000, p. 5–20, Swedish Society for Research in Mathematics Education.Google Scholar
  3. Artigue, M. (2001): Learning Mathematics in a CAS Environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work, CAME 2001, Freudenthal Institut, Utrecht, http://ltsn.mathstore.ac.uk/came/events/freudenthal/themel.htmlGoogle Scholar
  4. Balacheff, N. (1994): Didactique et intelligence artificielle—In: Recherches en Didactique des Mathématiques 14(1/2). Grenoble: La Pensée Sauvage Editions. p. 9–42.Google Scholar
  5. Bottino, R.; Furinghetti, F. (1996): The emerging of teachers' conceptions of new subjects inserted into mathematics programs: the case of informatics.—In: Educational Studies in Mathematics 30, p. 109–134.Google Scholar
  6. Brousseau, G. (1998) Théorie des situations didactiques. Grenoble: La pensée Sauvage.Google Scholar
  7. Chevallard, Y. (1992): Intégration et viabilité des outlis informatiques.—In: Cornu B (coord par), L'ordinateur pour enseigner les mathématiques Paris: PUF.Google Scholar
  8. Dorfler, W. (1993): Computer Use and View of the Mind.—In: Keitel C.; Ruthven (eds), Learning From Computers: Mathematics Education and Technology, vol. 121, Nato Serie F, p. 159–186, Springer Verlag.Google Scholar
  9. Dreyfus, T. (1993): Didactic design of computer-based learning environnements.—In: Keitel C.: Ruthven K. (eds.), Learning from Computers: Mathematics Education and Technology, vol 121, Nato Serie F, p. 101–130, Springer-VerlagGoogle Scholar
  10. Drijvers, P. (2000): Students Encountering Obstacles Using a CAS.—In: International Journal of Computers for Mathematical Learning 5 (3), p. 189–209.Google Scholar
  11. Drijvers, P. (2002): Learning mathematics in a computer algebra environment: obstacles are opportunities.—In this issue.Google Scholar
  12. Duval, R. (1996): Quel cognitif retenir en didactique?—In: Recherches en Didactique des Mathématiques 16(3), p. 349–382.Google Scholar
  13. Guin, D.; Trouche, L. (1999): The complex process of converting tools into mathematical instruments: the case of calculators.—In: International Journal of Computers for Mathematical Learning 3, p. 195–227.Google Scholar
  14. Guin, D.; Trouche L. (eds.) (2002): Calculatrices symboliques, faire d'un outil un instrument du travail mathématique, un problème didactique. Grenoble: La Pensée Sauvage Editions.Google Scholar
  15. Hershkowitz, R.; Kieran, C. (2001). Algorithmic and meaningful ways of joining together representatives within same mathematical activity: an experience with graphing calculators. In: Van den Heuvel-Panhuizen, M. (Ed), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education vol 1, p. 95–107. Utrecht: Freudenthal Institute.Google Scholar
  16. Kendal, M.; Stacey, K. (2001): The Impact of teacher privileging for technopole differentiation with technology.—In: International Journal of Computer for Mathematical Learning 6(2), p. 1–23.Google Scholar
  17. Kendal, M.; Stacey, K. (2002); Teachers in transition: Moving towards CAS-supported classrooms.—In this issue.Google Scholar
  18. Lagrange, J.-B. (2000): L'Intégration d'Instruments Informatiques dans l'Enseignement: une Approche par les Techniques.—In: Educational Studies in Mathematics 43 (1), p. 1–30.Google Scholar
  19. Lagrange, J.-B.; Artigue, M.; Laborde, C.; Trouche, L. (2001): A meta study on IC technologies in education; towards a multidimensional framework to tackle their integration.—In: Van den Heuvel-Panhuizen, M. (Ed) Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education vol 1, p. 111–122. Utrecht: Freudenthal Institute.Google Scholar
  20. Monaghan, J. (2001): Teachers' classroom interactions in Ictbased mathematics lessons.—In: Van den Heuvel-Panhuizen, M. (Ed.): Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education vol 1, p. 383–390, Utrecht: Freudenthal Institute.Google Scholar
  21. Noss, R.; Hoyles, C. (1996): Windows on Mathematical Meanings, p. 153–166. Dordrecht: Kluwer Academic Publishers.Google Scholar
  22. Penglase, M.; Arnold, S. (1996): The Graphics Calculators in Mathematics Education: a Critical Review of Recent Research.—In: Mathematics Education Research Journal, vol 8, p. 58–90.Google Scholar
  23. Pitrat, J. (1990): Métaconnaissance, futur de l'intelligence artificielle. Paris, Hermès.Google Scholar
  24. Rabardel, P. (2000): Eléments pour une approche instrumentale en didactique des mathématiques, Actes de l'école d'été de didactique des mathématiques, p. 202–213, Caen, IUFM.Google Scholar
  25. Rabardel, P.; Samurçay, R. (2001): From Artifact to Instrument-Mediated Learning, New Challenges to Research on Learning. International symposium organized by the Center for Activity Theory and Developmental Work Research, University of Helsinki.Google Scholar
  26. Robert, A.; Robinet, J. (1996): Pour une prise en compte du méta en didactique des mathématiques.—In: Recherches en Didactique des Mathématiques 16 (2), p. 145–176.Google Scholar
  27. Ruthven, K.; Chaplin, D. (1997): The calculator as a Cognitive Tool: Upper-primery pupils tackling a realistic number problem.—In: International Journal of Computers for Mathematical Learning 2, p. 93–124.Google Scholar
  28. Schneider, E. (2000): Teacher experiences with the use of a CAS in a mathematics classroom.—In: The International Journal of Computer Algebra in Mathematics Education 7(2), p. 119–141.Google Scholar
  29. Trouche, L. (1997): A propos de l'enseignement des limites de fonctions dans un “environnement calculatrice”, étude des rapports entre processus de conceptualisation et processus d'instrumentation. PhD. Montpellier: Université Montpellier II.Google Scholar
  30. Trouche, L. (2000): La parabole du gaucher et de la casserole à bee verseur: étude des processus d'apprentissage dans un environnement de calculatrices symboliques.—In: Educational Studies in Mathematics 41(2), p. 239–264.Google Scholar
  31. Vergnaud, G. (1996): Au: fond de l'apprentissage, la conceptualisation.—In: Noirfalise R., Perrin M-J. (eds.). Actes de l'Ecole d'Eté de Didactique des Mathématiques, p. 174–185. Clermont-Ferrand: IREM, Université Clermont-Ferrand II.Google Scholar
  32. Verillon, P.; Rabardel P. (1995): Cognition and artifacts: A contribution to the study of through in relation to instrument activity.—In: European Journal of Psychology in Education 9(3): p. 77–101.Google Scholar
  33. Wartofsky, M. (1983): From genetic epistemology to historical epistemology: Kant, Marx and Piaget.—In: Liben, L.S. (Ed.), Piaget and the fondations of knowledges, Hillsdale, N.J., Lawrence Erlbaum.Google Scholar
  34. Yerushalmy, M. (1997): Reaching the unreachable: Technology and the semantics of asymptotes.—In: International Journal of Computers for Mathematical Learning 2, p. 1–25.Google Scholar

Copyright information

© ZDM 2002

Authors and Affiliations

  • Dominique Guin
    • 1
  • Luc Trouche
    • 1
  1. 1.ERES & LIRMMUniversität MontpellierMontpellier cedex 5France

Personalised recommendations