Skip to main content
Log in

Effects of barrier layer and processing conditions on thin film Cu microstructure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The crystallographic texture and grain size of sputtered Cu films were characterized as a function of deposition temperature, barrier layer material, and vacuum conditions. For Cu deposited in a HV chamber, (111) Cu texture was found to weaken with increasing deposition temperatures on W, amorphous C and Ta barrier layers, each deposited at 30°C. Conversely, under identical Cu deposition conditions, texture was found to strengthen with increasing deposition temperature on Ta deposited at 100°C. Median Cu grain size varied parabolically with deposition temperature on all barrier layers and was slightly higher on the 100°C Ta at a given Cu deposition temperature, relative to the other underlayers. For depositions in an UHV chamber, Cu texture was found to strengthen with increasing Cu deposition temperature, independent of Ta deposition temperature. Median Cu grain size, however, was still higher on 100°C Ta than on 30°C Ta. The observed differences between the two different chambers suggest that the trend of weak texture at elevated deposition temperatures may be related to contamination. Characterization of the Ta underlayers revealed that the strengthened texture of Cu films deposited on 100°C Ta is likely related to textural inheritance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.-L. Pai and C.H. Ting,VMIC Conf. Proc. 6, 258 (1989).

    Google Scholar 

  2. J. Tao, N.W. Cheung and C. Hu,IEEE Electron. Dev. Lett. 14, 249 (1993).

    Article  CAS  Google Scholar 

  3. K.P. Rodbell, E.G. Colgan and C.-K. Hu,Mat. Res. Soc. Symp. Proc. 337 (1994).

  4. L. Stolt, A. Charai, F.M. D’Heurle, P.M. Fryer and J.M.E. Harper,J. Vac. Sci. Tech. A 9, 1501 (1991).

    Article  CAS  Google Scholar 

  5. K. Holloway and P.M. Fryer,Appl. Phys. Lett. 57, 1736 (1990).

    Article  CAS  Google Scholar 

  6. E. Kolawa, J.S. Chen, J.S. Reid, P.J. Pokela and M.A. Nicolet,J. Appl. Phys. 70, 1369 (1991).

    Article  CAS  Google Scholar 

  7. J. Li, J.W. Strane, S.W. Russell, S.Q. Hong, J.W. Mayer, T.K. Marais, C.C. Theron and R. Pretorius,J. Appl. Phys. 72, 2810 (1992).

    Article  CAS  Google Scholar 

  8. R.G. Purser, J.W. Strane and J.W. Mayer,Mat. Res. Soc. Symp. Proc. 309 (1993), p. 481.

  9. D.P. Tracy, D.B. Knorr and K.P. Rodbell,J. Appl. Phys. 76, 2671 (1994).

    Article  CAS  Google Scholar 

  10. C.V. Thompson,Annu. Rev. Mater. Sci. 20, 245 (1990).

    Article  CAS  Google Scholar 

  11. S. Vaidya and A.K. Sinha,Thin Sol. Films 75, 253 (1981).

    Article  CAS  Google Scholar 

  12. J. Cho and C.V. Thompson,J. Electron. Mater. 19, 1207 (1990).

    CAS  Google Scholar 

  13. D.B. Knorr and K.P. Rodbell,Mat. Res. Soc. Symp. Proc. 309 (1993), p. 345.

  14. R.P. Vinci and J.C. Bravman,Mat. Res. Soc. Symp. Proc. 308 (1993), p. 337.

  15. D.P. Tracy and D.B. Knorr,J. Electron. Mater. 22,611(1993).

    Google Scholar 

  16. T. Ohmi, T. Saito, M. Otsuki, T. Shibata and T. Nitta,J. Electrochem. Soc. 138, 1089 (1991).

    Article  CAS  Google Scholar 

  17. J.M.E. Harper, J. Gupta, D.A. Smith, J.W. Chang, K.L. Holloway, C. Cabrai, D.P. Tracy and D.B. Knorr,Appl. Phys. Lett. 65, 177 (1994).

    Article  CAS  Google Scholar 

  18. E.M. Zielinski, R.P. Vinci and J.C. Bravman,J. Appl. Phys. 76, 4516 (1994).

    Article  CAS  Google Scholar 

  19. M.J. Verkerk, G.J. van der Kolk and W.A.M.C. Brankaert,Semicon. Int. 11, 106 (1988).

    Google Scholar 

  20. G.J. van der Kolk, M.J. Verkerk and W.A.M.C. Brankaert,Semicon. Int. 11, 224 (1988).

    Google Scholar 

  21. D.R. Frear, A.N. Campbell, B.L. Draper and R.E. Mikawa,J. Electron. Mater. 18, 517 (1989).

    CAS  Google Scholar 

  22. L.G. Schulz,J. Appl. Phys. 20, 1030 (1949).

    Article  Google Scholar 

  23. D.B. Knorr,Mat. Res. Soc. Symp. Proc. 309 (1993), p. 75.

  24. Standard Test Method for Preparing Quantitative Pole Figures, ASTM Standard E81-90 (Philadelphia, PA: American Society for Testing and Materials, 1990).

  25. E.F. Kaelble,Handbook of X-rays (New York: McGraw-Hill Book Company, 1967).

    Google Scholar 

  26. S. Roberts and P.J. Dobson,Thin Sol. Films 135, 137 (1986).

    Article  CAS  Google Scholar 

  27. P.T. Moseley and C.J. Seabrook,Acta Crystallogr. B 29, 1170 (1973).

    Article  CAS  Google Scholar 

  28. L.A. Clevenger, N.A. Bojarczuk, K. Holloway, J.M.E. Harper, C. Cabrai Jr., R.G. Schad, F. Cardone and L. Stolt,J. Appl. Phys. 73, 300 (1993).

    Article  CAS  Google Scholar 

  29. P. Catania, J.P. Doyle and J.J. Cuomo,J. Vac. Sci. Tech. A 10, 3318 (1992).

    Article  CAS  Google Scholar 

  30. D.B. Knorr and T.-M. Lu,Appl. Phys. Lett. 54, 2210 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zielinski, E.M., Vinci, R.P. & Bravman, J.C. Effects of barrier layer and processing conditions on thin film Cu microstructure. J. Electron. Mater. 24, 1485–1492 (1995). https://doi.org/10.1007/BF02655467

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655467

Key words

Navigation