Skip to main content
Log in

Stress relaxation behavior of eutectic tin-lead solder

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The creep behavior of eutectic tin-lead solder was investigated using stress relaxation techniques. Stress relaxation experiments were performed on cast tensile specimens of commercial eutectic tin-lead solder, SN63. The sample casting conditions were controlled to produce microstructures similar to those found in typical solder joints on electronic assemblies. The stress relaxation data was analyzed to extract constitutive relations for creep. The strain rate during relaxation was found to follow two power law expressions, one with n = 3.2 at low stress levels and the other with n = 6.2 at higher stress levels. The apparent activation energy for creep and the power law exponent are discussed with relation to the published data for this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Korb and D.O. Ross,IEEE Trans. Parts, Hybrids, and Packaging CHMT-6 (3) (September 1983), p. 227.

  2. E.A. Wright and W.M. Wolverton,IEEE Electron. Comp. Conf. (1984), p. 149.

  3. R. Darveaux and K. Banerji,IEEE Trans. Components, Hybrids and Manu. Technol. 15 (December 1992), p. 1013.

    Article  CAS  Google Scholar 

  4. N. Enke, T. Kilinski, S. Schroeder and J. Lesniak,Proc. 1989 IEEE Elec. Comp. Conf., p. 264.

  5. J. Tien, B. Hendrix and A. Attarwala,IEEE Trans. Components, Hybrids and Manu. Technol. 12 (4) (December 1989), p. 502.

    Article  CAS  Google Scholar 

  6. J. Schneible and P. Hazzledine,J. Mater. Sci. 18, 562 (1983).

    Article  Google Scholar 

  7. H. Solomon,General Electric—Technical Information Series, Report # 86CRD145 (Spetember 1986).

  8. S. Lam, A. Arieli and A. Mukherjee,Matls. Sci. and Engr. 40 (1979), p. 73.

    Article  CAS  Google Scholar 

  9. S. Knecht and L. Fox,IEEE Trans. Components, Hybrids and Manu. Technol. 13 (2) (June 1990), p. 424.

    Article  CAS  Google Scholar 

  10. A. Juhasz, P. Tasnadi, P. Szaszvari and I. Kovacs,J. Mater. Sci. 21, 3287 (1986).

    Article  CAS  Google Scholar 

  11. E. Baker and T. Kessler,IEEE Trans. Parts, Hybrids, and Packaging PHP-9 (4) (1973), p. 243.

    Article  Google Scholar 

  12. E. Baker,Mater. Sci. Eng. 38, 241 (1979).

    Article  CAS  Google Scholar 

  13. G.S. Murty,J. Mater. Sci. Lett. 8, 611 (1973).

    CAS  Google Scholar 

  14. B.P. Kashyapand G.S. Murty, Met.Trans A12A, 1923(1981).

    Google Scholar 

  15. B.P. Kashyap and G.S. Murty,Mat. Sci. and Engr. 50, 205 (1981).

    Article  CAS  Google Scholar 

  16. R. Rohde and J. Swearengen,J. Engr. Mat. and Tech. 102, 207 (1980).

    Article  CAS  Google Scholar 

  17. D. Tribula, D. Grivas and J. Morris,ASME Publication 88- WA/EEP-13 (1988), p. 387.

  18. R. Arrowood and A.K. Mukherjee,Mater. Sci. and Eng. 92, 23 (1987).

    Article  CAS  Google Scholar 

  19. R. Arrowood and A.K. Mukherjee,Mater. Sci. and Eng. 92, 33 (1987).

    Article  CAS  Google Scholar 

  20. K.R. Stone, R. Duckett, S. Muckett and M. Warwick,Brazing and Soldering, No. 4 (Spring 1983), p. 20.

  21. R.N. Wild,Properties of Some Low Melt Fusible Solder Alloys, IBM Report No. 71Z000408 (October 1971), p. 28.

  22. R. Gohle,The Significance of Strength for the Reliability of Solder Joints in Electronics, European Space Research Organization Report No. ESRO TT-58 (May 1974), p. 73.

  23. J.A. Devore,NEPCON Proc. (1982), p. 409.

  24. G. Becker,Circuit World 11 (1), 4 (1984).

    Google Scholar 

  25. E.R. Bangs and R.E. Beal,Welding Research Supplement (October 1975), p. 377s.

  26. R.E. Clauser,Thermal Stress Cycling Behavior of Tin-Lead Solder Initial Results, Technical Memorandum # 86(6461- 31)-3, (El Segundo, CA: The Aerospace Corporation, 1985), p. 16.

    Google Scholar 

  27. R.N. Wild,Some Fatigue Properties of Solders and Solder Joints, IBM Report No. 74Z000481 (1975), p. 28.

  28. R. Subrahmanyan, J.R. Wilcox and C.-Y. Li,IEEE Electron. Comp. Conf. (1989), p. 240.

  29. D. Stone, S.-P. Hannula and C.-Y. Li,IEEE Electron. Comp. Conf. (1985), p. 46.

  30. G.V. Clatterbaugh and H.K. Charles, Jr.,35th Electron. Comp. Conf. 35 (1985), p. 60.

    Google Scholar 

  31. G.V. Clatterbaugh and H.K. Charles, Jr.,36th Electron. Comp. Conf. (1986), p. 31.

  32. D.L. Waller, L.R. Fox and R.J. Hannemann,IEEE Trans. Parts, Hybrids, and Packaging, Vol. CHMT-6 (3) (September 1983), p. 257.

    CAS  Google Scholar 

  33. W.M. Sherry, J.S. Erich, M.K. Bartschat and F.B. Prinz,35th Electron. Comp. Conf. 35 (1985), p. 81.

    Google Scholar 

  34. D.E. Riemer and C.W. Saulsberry,ISHM ’84 Proc. (1984), p. 480.

  35. D.E. Riemer and J.D. Russell,ISHM ’83 Proc. (1983), p. 217.

  36. J.K Hagge,Proc. IEPS (1982), p. 199.

  37. P.M. Hall, T.D. Dudderar and J.F. Argyle,33rd Electron. Comp. Conf. (1983), p. 350.

  38. D.B. Barker, A. Dasgupta and M.G. Pecht,1991 Proc. Reliability and Maintainability (1991), p. 451.

  39. D.R. Frear, W.B. Jones and K.R. Kinsman, eds.,Solder Mechanics: a State of the Art Assessment, (Warrendale, PA: TMS, 1990).

    Google Scholar 

  40. J.H. Lau, ed.,Solder Joint Reliability: Theory and Applications (Van Nostrand Reinhold, 1991).

  41. M.E. Fine and D.A. Jeannotte,Microelectronic Packaging Technology, Materials & Processes, ed. W.T. Shieh (Materials Park, OH: ASM International, 1989), p. 147.

    Google Scholar 

  42. J.H. Lau and D.W. Rice,Solid State Technol. 28, 91 (10) (October 1985).

    CAS  Google Scholar 

  43. R. Ross, L. Wen, G. Mon and E. Jetter,J. Electron. Pack. 114, 185 (June 1992).

    Google Scholar 

  44. R.C. Weinbul, J.K Tien, R.A. Pollak and S.K. Kang,J. Mater. Sci. 22, 3901 (1987).

    Article  Google Scholar 

  45. J.K Tien, B.C. Hendrix, P.L. Bretz and A.I. Attarwala,IEEE Proc. Elec. Comp. Conf. (1989), p. 259.

  46. B.C. Hendrix, P.L. Bretz, J.K Tien and S.K. Kang,Microelectronic Packaging Technology, Materials & Processes, ed. W.T. Shieh (Materials Park, OH: ASM International, 1989), p.129.

    Google Scholar 

  47. S. Vaynman,IEEE Proc. Elec. Comp. Conf. (1989), p. 273.

  48. S. Vaynman,IEEE Trans, on Components, Hybrids and Manu. Tech. 12 (4) (December 1989), p. 469.

    Article  CAS  Google Scholar 

  49. D.R. Frear, W.B. Jones and N.R. Sorensen,Proc. 5th Int. Conf. Creep of Materials (Lake Buena Vista, Florida, 18–21 May 1992), p. 341.

    Google Scholar 

  50. L.R. Fox, M.C. Shine and J.W. Sofia,NEPCON West (1985), p. 871.

  51. M. Shine and L. Fox,ASTM STP 942 (1988), p. 588.

  52. M.C. Shine, L.R. Fox and J.W. Sofia,Proc. IEPS Intl. Electron. Comp. Conf. (1984), p. 346.

  53. D. Frear,IEEE Trans. Components, Hybrids and Manu. Technol. 13 (4) (December 1990), p. 718.

    Article  CAS  Google Scholar 

  54. D. Frear,Ph.D. Thesis (1987).

  55. D.R. Frear,IEEE Proc. Elec. Comp. Conf. (1989), p. 293.

  56. H.J. Frost, G.S. Stone and R.T. Howard,Microelectronic Packaging Technology, Materials & Processes, ed. W.T. Shieh (Materials Park, OH: ASM International, 1989), p. 121.

    Google Scholar 

  57. J. Schneible and P. Hazzledine,Scripta Metall. 11, 935 (1977).

    Google Scholar 

  58. J. Schneible and P. Hazzledine,ActaMetall. 30, 1223 (1982).

    Google Scholar 

  59. A. Geckinli and C. Barrett,Scripta Metall. 8, 115 (1974).

    Article  CAS  Google Scholar 

  60. M. Samash, Westinghouse Defense and Space Center for NASA,NASA Report # N69-25697 (August 1968).

  61. O.D. Sherby and P.M. Burke,Progr. Mater. Sci. 13, 325 (1967).

    Google Scholar 

  62. D. Tribula,Ph.D. Thesis, LBL-29018 (1990).

  63. T.G. Langdon,Strength of Metals and Alloys: Proc. 6th Int. Conf. (August 1982), p. 1105.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hare, E.W., Stang, R.G. Stress relaxation behavior of eutectic tin-lead solder. J. Electron. Mater. 24, 1473–1484 (1995). https://doi.org/10.1007/BF02655466

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655466

Key words

Navigation