Skip to main content
Log in

Temperature-dependent minority-carrier lifetime measurements of red AlGaAs light emitting diodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electroluminescent decay and internal quantum efficiency measurements are made as a function of temperature on two double heterostructure AIGaAs light emitting diodes (LEDs) that emit in the visible (red) portion of the spectrum. The electroluminescent lifetimes increase by more than a factor of ten and the internal quantum efficiency falls by a factor of three as the temperature is raised from 90 to 400K. By analyzing the data with a model that accounts for the transfer with increasing temperature of the minority-carrier electrons from the direct-gap to the indirect-gap minima in the p-type active layer of these near-crossover LEDs, values for the radiative and nonradiative lifetimes as a function of temperature are obtained. A fit to the radiative-lifetime data results in an estimate of 1.3 × 10−10 cm3s−1 for the room-temperature radiative recombination coefficient of Al0.39Ga0.61As, which is very similar to values reported for GaAs. The nonradiative lifetimes are found to be nearly independent of temperature from 220 to 400K and provide upper limits of 940 and 1250 cms−1 for the interface recombination velocities of the two samples. These values are roughly an order of magnitude lower than any previously reported values for high-Al-content (x > 0.3) AlxGa1−xAs heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.C. Casey, Jr. and M.B. Panish,Heterostructure Lasers (Orlando, FL: Academic Press, 1978).

    Google Scholar 

  2. H. Kressel and J.K. Butler,Semiconductor Lasers and Heterojunction LEDs (Orlando, FL: Academic Press, 1977).

    Google Scholar 

  3. J. Nishizawa, M. Koike and C.C. Jin,J. Appl. Phys. 54, 2807 (1983).

    Article  CAS  Google Scholar 

  4. S. Ishimatsu and Y. Okuno,Optoelectronics—Devices and Technologies 4, 21 (1989).

    CAS  Google Scholar 

  5. F.M. Steranka, D.C. DeFevere, M.D. Camras, C.W. Tu, D.K. McElfresh, S.L. Rudaz, L.W. Cook and W.L. Snyder,Hewlett Packard Journal 39, 84 (1988).

    Google Scholar 

  6. R.J. Nelson and R.G. Sobers,J. Appl. Phys. 49, 6103 (1978).

    Article  CAS  Google Scholar 

  7. G.W. ’tHooft,Appl. Phys. Lett. 39, 389 (1981).

    Article  CAS  Google Scholar 

  8. C.J. Hwang and J.C. Dymet,J. Appl. Phys. 44, 3240 (1973).

    Article  CAS  Google Scholar 

  9. SeeK. Ahrenkiel, B.M. Keyes, T.C. Shen, J.I. Chyi and H. Morkoç,J. Appl. Phys. 69, 3094 (1991) and references therein.

    Article  CAS  Google Scholar 

  10. R.J. Nelson and R.G. Sobers,Appl. Phys. Lett. 32, 761 (1978).

    Article  CAS  Google Scholar 

  11. C.B. Su and R. Olshansky,Appl. Phys. Lett. 41, 833 (1982).

    Article  CAS  Google Scholar 

  12. K.H. Huang, J.G. Yu, C.P. Kuo, R.M. Fletcher, T.D. Osentowski, L.J. Stinson, M.G. Craford and A.S.H. Liao,Appl. Phys. Lett. 61, 31 (1992).

    Article  Google Scholar 

  13. B.W. Hakki,J. Appl. Phys. 42, 4981 (1971).

    Article  CAS  Google Scholar 

  14. R.W. Kaliski, J.E. Epler, N. Holonyak, Jr., M.J. Peanasky, G.A. Herrmannsfeldt, H.G. Drickamer, M.J. Tsai, M.D. Camras, F.G. Kellert, C.H. Wu and M.G. Craford,J. Appl. Phys. 57, 1734 (1985).

    Article  CAS  Google Scholar 

  15. P. Asbeck,J. Appl. Phys. 48, 820 (1977).

    Article  CAS  Google Scholar 

  16. T.S. Moss, G.J. Burrell and B. Ellis,Semiconductor Opto- Electronics (London: Butterworths, 1973).

    Google Scholar 

  17. G.W. ’tHooft and C. van Opdorp,Appl. Phys. Lett. 42, 813 (1983).

    Article  CAS  Google Scholar 

  18. W.P. Dumke,Phys. Rev. 132,1998 (1963).

    Article  Google Scholar 

  19. See the AlGaAs luminescence and absorption coefficient data presented in B. Monemar, K.K. Shih and G.D. Pettit,J. Appl. Phys. 47, 2604 (1976).

    Article  CAS  Google Scholar 

  20. G.W. ’tHooft, C. van Opdorp, H. Veenvliet and A.T. Vink,J. Cryst. Growth 55, 173 (1981).

    Article  CAS  Google Scholar 

  21. G.D. Gilliland, D.J. Wolford, T.F. Kuech, J.A. Bradley and H.P. Hjalmarson,J. Appl. Phys. 73, 8386 (1993).

    Article  CAS  Google Scholar 

  22. E.W. Williams and R.A. Chapman,J. Appl. Phys. 38, 2547 (1967).

    Article  CAS  Google Scholar 

  23. D.Z. Garbuzov, V.B. Khalfin, M.K. Trukan, V.G. Agafonov and A. Abdullaev,Sov. Phys. Semicond. 12, 809 (1978).

    Google Scholar 

  24. N. Abakumov, V.I. Perel and I.N. Yassievich,Nonradiative Recombination in Semiconductors, Modern Problems in Condensed Matter Physics 33, ed. V.M. Agranovich and A.A. Maradudin (Amsterdam: North-Holland, 1991), p. 28.

    Google Scholar 

  25. R.K. Ahrenkiel, M.B. Keyes and D.J. Dunlavy,J. Appl. Phys. 70 225 (1991)

    Article  CAS  Google Scholar 

  26. C.H. Henry and D.V. Lang,Phys. Rev. B 15, 989 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steranka, F.M., Defevere, D.C., Camras et al. Temperature-dependent minority-carrier lifetime measurements of red AlGaAs light emitting diodes. J. Electron. Mater. 24, 1407–1412 (1995). https://doi.org/10.1007/BF02655456

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655456

Key words

Navigation