Skip to main content
Log in

Film morphology and reaction rate for the CVD of tungsten by the WF6—SiH4 reaction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Low pressure chemical vapor deposition (LPCVD) of tungsten (W) by SiH4 reduction of WF6 on Si(100) surfaces was studied in a single-wafer, cold-wall reactor over a temperature range of 137–385°C and a pressure range of 1-10 Torr at a SiH4/WF6 ratio of 1.0. Rate data were obtained in the absence of gas-phase mass transport limitations and were measured using gravimetric techniques. The amount of tungsten that was deposited varied between 5.79 × 10−5 and 1.70 × 10−2 g/cm2 (∼300−88,000Å based on a tungsten density of 19.3 g/cm3), and the rates were between 1.02 × 10−4 and 1.74 × 10−3 g/cm2 min (∼500-9,000Å/ min). The apparent overall activation energy increased with pressure; 0.12 eV/ atom at 1 Torr, and 0.40 eV/atom at 10 Torr for short reaction times (0.5–1.5 min). The overall rate was dependent on reaction time (film thickness). Better film morphologies were obtained at higher temperatures and lower pressures. AW(110) preferential orientation was observed at the Si-W interface. Tungsten orientation switched from (110) to (100) as the films grew thicker. Higher apparent activation energies observed at higher pressures were attributed to gas phase reactions and/or by-product readsorption. The interdependence of rate and film morphology was attributed to a reconstruction of W(100) surfaces on which reactant diffusion/surface reaction is favored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Lo, R.W. Haskell, J.G.Byrne and A. Sosin,4th Intl. Conf. on CVD, (Princeton, NJ: The Electrochem. Soc., 1973), p. 74.

    Google Scholar 

  2. R. Foster, S. Tseng, L. Lane and K. Ahn,Tungsten and Other- Refractory Metals for VLSI Applications III, ed. V.A. Wells (Pittsburgh, PA: MRS Publishers, 1988), p. 69.

    Google Scholar 

  3. T. Ohba, S. Inoue and M. Maeda,Proc. IEEE IEDM Tech Digest, (1987), p. 213.

  4. H. Kotani, T. Tsutsumi, J. Komori and S. Nagao, ibid., p. 217.

  5. N. Kobayashi, N. Hara, S. Iwata and Y. Yamamota,Proc. V-Mic. Conf., (1986), p. 436.

  6. R.C.Ellwanger, J.E.J. Schmitz and A.J.M. van Dijk, ibid, Ref. 2, p. 399.

  7. Y. Kusumoto, K. Takakuwa, H. Hashinokuchi, T. Ikuta and I. Nakayama, ibid, Ref. 3, p. 103.

  8. T. Ohba, T. Suzuki, T. Hara, Y. Furumura and K. Wada,Tungsten and Refractory Metals for VLSI Applications PV, eds. R.S. Blewer and C.M. McConica, (Pittsburgh, PA: MRS Publishers, 1989), p. 17.

    Google Scholar 

  9. J.E.J. Schmitz, A.J.M. van Dijk and M.W.M. Graef,Proc. 10th Intl. Conf. on CVD, ed. G.W. Cullen, (Princeton, NJ: Electrochemical Soc., 1987) Vol 87-8, p. 625.

    Google Scholar 

  10. R. Rosier, J. Mendonca and M.J. Rice,J. Vac. Sci. and Tech B 6, 1721 (1988).

    Article  Google Scholar 

  11. Y. Maeda, H. Suzuki, T. Sakoh, K. Marita and T. Ohmi,J. Electrochem. Soc. 141, 566 (1994).

    Article  CAS  Google Scholar 

  12. S. Sivaram, M.L.A. Dass, O.S. Wei, B. Tracy and R. Shukla,J. Vac. Sci. and Tech. A 11, 87 (1993).

    Article  CAS  Google Scholar 

  13. M.L. Yu, B.N. Eldridge and R.V. Joshi, ibid, Ref. 8, p. 221.

    Google Scholar 

  14. M.L. Yu, K.Y. Ahn and R.V. Joshi,Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, eds. S.S. Wong and S. Furukawa (Pittsburgh, PA: MRS Publishers 1990), p. 15.

    Google Scholar 

  15. J.E.J. Schmitz, M.J. Buiting and R.C. Ellwanger, ibid, Ref. 8, p. 27.

    Google Scholar 

  16. C.A. van der Jeugd, G.C.A.M. Janssen and S. Radelaar,J. Appl. Phys. 72, 1583 (1992).

    Article  Google Scholar 

  17. JAM. Ammerlaan, P.J. van der Put and J. Schoonman,J. Appl. Phys. 73, 4631 (1993).

    Article  CAS  Google Scholar 

  18. J. Holleman, A. Hasper and C.R. Klein,J. Electrochem. Soc. 140, 818 (1993).

    Article  CAS  Google Scholar 

  19. N. Kobayashi, H. Goto and M. Suzuki,J. Appl. Phys. 69, 1013 (1991).

    Article  CAS  Google Scholar 

  20. S. Bolnedi, G.B. Raupp and T.S. Cale,Advanced Metallization for ULSI Applications, eds. D.P. Favreau and Y. Horiike, (Pittsburgh, PA: MRS Publishers, 1994), p. 385.

    Google Scholar 

  21. E. Nishitani, N. Chiba and S. Kobayashi, ibid, p. 377.

    Google Scholar 

  22. M. Suzuki, N. Kobayashi and K. Mukai, ibid, Ref. 14, p. 267.

    Google Scholar 

  23. H. Gokce, T. Sahin and J.T. Sears, ibid, Ref. 14, p. 103.

    Google Scholar 

  24. A.W. Vere,Crystal Growth Principles and Progress, (New York: Plenum Press, 1987), p. 5.

    Google Scholar 

  25. H.C. Theurer,J. Electrochem. Soc. 108, 649 (1961).

    Article  Google Scholar 

  26. X-ray Powder Data File, ed. J.V. Smith, (Philadelphia, PA: American Society for Testing and Materials, 1960).

    Google Scholar 

  27. B.D. Cullity,Elements of X-ray Diffraction, (Reading, MA: Addison- Wesley, 1978), pp. 81,99.

    Google Scholar 

  28. H. Gokce, 1991 Ph.D. Thesis, Montana State University, Bozeman, Montana.

    Google Scholar 

  29. P.S. Peercy et al.,J. Mater. Res. 5, 852 (1990).

    Google Scholar 

  30. C. Chang,J. Vac. Sci. Technol. A. 9, 98 (1991).

    Article  CAS  Google Scholar 

  31. D.W. Shaw,Crystal Growth, ed. C.H.L. Goodman, (London: Plenum Press, 1974), p. 1.

    Google Scholar 

  32. Y.F. Wang and R. Pollard,Advanced Metallization for ULSI Applications, eds. T.S. Cale and F.S. Pintchkovski, (Pittsburgh, PA: MRS Publishers, 1993), p. 169.

    Google Scholar 

  33. W. Kern and V. Ban,Thin Film Processes, eds. J.L. Vossen and W. Kern, (New York: Academic Press, 1978), p. 257.

    Google Scholar 

  34. H. Schafer,Chemical Transport Reactions, (New York: Academic Press, 1964), p. 16.

    Google Scholar 

  35. E.J. McInerney, T.W. Mountsier, B.L. Chin and E.K. Broadbent,J. Vac. Sci. Technol. B 11, 734 (1993).

    Article  CAS  Google Scholar 

  36. Y. Nakamura, N. Kobayashi, H. Goto and Y. Homma,Ext. Abs. Intl. Conf. on Solid State Devices and Materials, (1991), p. 216.

  37. N. Kobayashi, Y. Nakamura, H. Goto and Y. Homma,J. Appl. Phys. 73, 4637 (1993).

    Article  CAS  Google Scholar 

  38. E.G. Colgan and J.D. Chapple-Sokol,J. Vac. Sci. Technol. B 10, 1156(1992).

    Article  CAS  Google Scholar 

  39. V.R. Deitz,Chemistry and Physics of Interfaces, (Washington, D.C.: American Chemical Society Publications, 1965), p. 118.

    Google Scholar 

  40. G.T. Hindman and G.B. Raupp,Advanced Metallization for ULSI Applications, eds. V.V.S. Rana, R.V. Joshi and I. Ohdamari, (Pittsburgh, PA: MRS Publishers, 1992), p. 53.

    Google Scholar 

  41. A.G. Sault and D.W. Goodman,Surf. Sci. 235, 28 (1990).

    Article  CAS  Google Scholar 

  42. C.A. van der Jeugd, N. Kobayashi and H. Goto, ibid, Ref. 20, p. 369.

    Google Scholar 

  43. G. Ehrlich and F.G. Hudda,J. Chem. Phys. 44, 1039 (1966).

    Article  CAS  Google Scholar 

  44. C.V. Thompson,MRS Symp. Proc. 280, 307 (1993).

    CAS  Google Scholar 

  45. D.W. Greve,MRS Symp. Proc. 312, 237 (1993).

    CAS  Google Scholar 

  46. R.M. Biefield and K.C. Baucom,MRS Symp. Proc. 312, 179 (1993).

    Google Scholar 

  47. M.H. Grabow, P.J. Feibelman, G.H. Gilmer, B.H. Cooper and Y.W. Mo,MRS Symp. Proc. 280, 11 (1993).

    CAS  Google Scholar 

  48. D.W. Shaw,Proc. 1968 Intl. Symp. GaAs, (London: Institute of Phys. Soc., 1969), p. 50.

    Google Scholar 

  49. T.I. Kamins, D.R. Bradbury, T.R. Cass, S.S. Laderman and G.A. Reid,J. Electrochem. Soc. 133, 2555 (1986).

    Article  CAS  Google Scholar 

  50. E. Bauer,Appl. Surface Sci. 11/12, 479 (1982).

    Article  Google Scholar 

  51. L.A. Bruce and H. Jaeger,Phil. Mag. A40, 97 (1979).

    Google Scholar 

  52. R.A. Barker and P.J. Estrup,J. Chem. Phys. 74, 1442 (1981).

    Article  CAS  Google Scholar 

  53. J.A. Prybyla, P.J. Estrup, S.C. Ying, Y.J. Chabal and S.B. Christman,Phys. Rev. Lett. 58, 1877 (1987).

    Article  CAS  Google Scholar 

  54. D.M. Riffe, G.K. Wertheim and P.H. Citrin,Phys. Rev. Lett. 65, 219 (1990).

    Article  CAS  Google Scholar 

  55. J. J. Arrecis, Y.J. Chabal and S.B. Christman,Phys. Rev. B 33, 7906 (1986).

    Article  CAS  Google Scholar 

  56. K. Kankaala, T. Ala-Nissila and S.-C. Ying,Phy. Rev. Lett. 47, 2333 (1993).

    CAS  Google Scholar 

  57. Y.B. Zhao and R. Gomer,Surf. Sci. 239, 189 (1990).

    Article  CAS  Google Scholar 

  58. K.G. Purcell, J. Jupille and D.A. King,Surf. Sci. 251/252,660 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokce, O.H., Sears, J.T. & Sahin, T. Film morphology and reaction rate for the CVD of tungsten by the WF6—SiH4 reaction. J. Electron. Mater. 25, 1531–1538 (1996). https://doi.org/10.1007/BF02655395

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655395

Key words

Navigation