Skip to main content
Log in

Synthesis and characterization of Pb(Zr0.54Ti0.46)O3 thin films on (100)Si using textured YBa2Cu3O7−δ and yttria-stabilized zirconia buffer layers by laser physical vapor deposition technique

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have fabricated high-quality <001> textured Pb(Zr0.54Ti0.46)O3 (PZT) thin films on (00l)Si with interposing <001> textured YBa2Cu3O7−δ (YBCO) and yttria-stabilized zirconia (YSZ) buffer layers using pulsed laser deposition (KrF excimer laser, λ, = 248 nm, τ = 20 nanosecs). The YBCO layer provides a seed for PZT growth and can also act as an electrode for the PZT films, whereas YSZ provides a diffusion barrier as well as a seed for the growth of YBCO films on (001)Si. These heterostructures were characterized using x-ray diffraction, high-resolution transmission electron microscopy, and Rutherford backscattering techniques. The YSZ films were deposited in oxygen ambient (∼9 × 10−4 Torr) at 775°C on (001)Si substrate having <001>YSZ // <001>Si texture. The YBCO thin films were deposited in-situ in oxygen ambient (200 mTorr) at 650°C. The temperature and oxygen ambient for the PZT deposition were optimized to be 530°C and 0.4-0.6 Torr, respectively. The laser fluence to deposit this multilayer structure was 2.5-5.0 J/cm2. The <001> textured perovskite PZT films showed a dielectric constant of 800-1000, a saturation polarization of 37.81 µC/cm2, remnant polarization of 24.38 µC/cm2 and a coercive field of 125 kV/cm. The effects of processing parameters on microstructure and ferroelectric properties of PZT films and device implications of these structures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferroelectric Thin Films, ed. E.R. Myers and A. Kingan (Pittsburgh, PA: Materials Research Society, 1990).

    Google Scholar 

  2. J. F. Scott, L. Kammerdimer, M. Parris, S. Trayner, V. Ottenbacher, A. Shawabken and W.F. Oliver,J. Appl. Phys. 64, 787 (1988).

    Article  CAS  Google Scholar 

  3. M. Okuyama, Y. Matsui, H. Nakamo and Y. Hamakawa,Ferroelectrics 33, 235 (1981).

    CAS  Google Scholar 

  4. R. Takayama, Y. Tomita, K. Iijima and I. Veda,J. Appl. Phys. 61, 411 (1987).

    Article  CAS  Google Scholar 

  5. T. Kawaguchi, H. Adachi, K. Setsune and K. Wasa,Appl. Opt. 23, 2187 (1984).

    Article  CAS  Google Scholar 

  6. M. Ishida, H. Matsuhami and T. Tanaka,Appl. Phys. Lett. 31, 433 (1977).

    Article  CAS  Google Scholar 

  7. H. Adachi, Y. Mitsuya, O. Yamazaki and K. Wasa,J. Appl. Phys. 30, 736 (1986).

    Article  Google Scholar 

  8. A. Okada,J. Appl. Phys. 49, 4494 (1978).

    Article  Google Scholar 

  9. S. B. Krupanidhi, N. Maffei, M. Sayer and K. El-Assal,J. Appl. Phys. 54, 6601 (1983).

    Article  CAS  Google Scholar 

  10. M. Oikawa and K. Toda,Appl. Phys. Lett. 29, 491 (1976).

    Article  CAS  Google Scholar 

  11. T. Nakagawa, J. Yamaguchi, M. Okuyama and Y. Hamakawa,Jpn. J. Appl. Phys. 21, L655 (1982).

    Article  Google Scholar 

  12. B. S. Kwak, E. P. Boyd and A. Erbil,Appl. Phys. Lett. 53, 1702 (1988).

    Article  CAS  Google Scholar 

  13. R. W. Vest and J. Xu,Ferroelectrics 93, 21 (1988).

    Google Scholar 

  14. S. Otsubo, T. Maeda, T. Minamikawa, Y. Yonezawa, A. Morimoto and T. Shimizu,Jpn. J. Appl. Phys. 29, L133 (1990).

    Article  CAS  Google Scholar 

  15. Kazuhide Abe, Hiroshi Tomita, Hiroshi Toyoda, Motomasa Imai and Yukari Yokote,Jpn. J.Appl. Phys. 30, 2152 (1991).

    Article  CAS  Google Scholar 

  16. H. Kidoh, T. Ogawa, A. Morimoto and T. Shimizu,Appl. Phys. Lett. 58, 2910 (1991).

    Article  CAS  Google Scholar 

  17. R. Ramesh, A. Inam, W.K. Chan, F. Tillerot, B. Wilkens, C.C. Chang, T. Sands, J.M. Tarascon and V.G. Kermidas,Appl. Phys. Lett. 59, 3542 (1991).

    Article  CAS  Google Scholar 

  18. P. Tiwari, S.M. Kanetkar, S. Sharan and J. Narayan,Appl. Phys. Lett. 57, 1578 (1990).

    Article  CAS  Google Scholar 

  19. D. K. Fork, D. B. Fenner, R. W. Barton, J. M. Phillips, G. A. N. Connell, J. B. Boyce and T. H. Geballe,Appl. Phys. Lett. 57, 1161 (1990).

    Article  CAS  Google Scholar 

  20. R. K. Singh, J. Narayan, A. K. Singh and C. B. Lee,J. Appl. Phys. 67, 3448 (1990).

    Article  CAS  Google Scholar 

  21. R. K. Singh, L. Ganapathi, P. Tiwari and J. Narayan,Appl. Phys. Lett. 55, 2351 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, P., Zheleva, T. & Narayan, J. Synthesis and characterization of Pb(Zr0.54Ti0.46)O3 thin films on (100)Si using textured YBa2Cu3O7−δ and yttria-stabilized zirconia buffer layers by laser physical vapor deposition technique. J. Electron. Mater. 23, 879–882 (1994). https://doi.org/10.1007/BF02655358

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655358

Key words

Navigation