Skip to main content
Log in

Electrical properties of synthetic sodalites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The bulk ionic conductivity of various sodalites (synthesized by the structure conversion method) and their starting materials, Linde molecular sieves, has been investigated over a temperature range between 300 to 700°K in a vacuum enclosure. The Arrhenius plots of these data indicate a single activation process. X-ray diffraction studies verify the conversion of molecular sieves into sodalite structures and also indicate that the unit cell parameter in sodalite is dependent upon the anion incorporated. The conductivity of sodalite is found to be dependent upon the unit cell parameter. Of the different materials studied, Cl-, Br-, I-sodalites and molecular sieves show progressively increasing conductivity and decreasing activation energy. The effect of adding sulfur to the sodalites is to raise the conductivity and lower the activation energy, relative to the undoped sodalites. These results are explained by a model based on the collapsing of the aluminosilicate framework into sodalite under the influence of the various halogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Rosenthal, Proc. IRE,28, 203 (1940).

    Article  Google Scholar 

  2. E. F. Williams, W. G. Hodgson, and J. S. Brinen, J. Am. Ceramic Soc.52, 139 (1969).

    Article  CAS  Google Scholar 

  3. R. C. Duncan, B. W. Faughnan and W. Philips, Appl. Optics9, 2236 (1970).

    Article  Google Scholar 

  4. W. Philips, J. Electrochem. Soc.117, 1557 (1970).

    Article  Google Scholar 

  5. D. W. G. Ballentyne and K. L. Bye, J. Phys. D3, 1438 (1970).

    Article  CAS  Google Scholar 

  6. D. J. Schipper, C. Z. Van Doom and P. T. Bolwijn, J. Am. Ceramic Soc.55, 256 (1972).

    Article  CAS  Google Scholar 

  7. I. F. Chang, Electrochem. Soc. Meeting, Chicago, May 13–18, 1973, to be published in J. Electrochem. Soc.

  8. I. F. Chang and A. Onton, AIME Mat. for Electronics Conf., Boston, August (1972). J. Mat. Electronics2, 17 (1973).

    CAS  Google Scholar 

  9. C. Z. Van Doom, D. J. Schipper and P. J. Bolwijn, J. Electrochem. Soc.119, 85 (1972).

    Article  Google Scholar 

  10. P. T. Bolwijn, D. J. Schipper and C. Z. Van Doom, J. Appl. Phys.43, 132 (1972).

    Article  CAS  Google Scholar 

  11. M. J. Taylor, D. J. Marshall, P. A. Forrester and S. D. McLaughlan, Rad. and Electronic Engineer.40, 17 (1970) or Forrester et al, NATO AGARD Proc. No. 5 (1970).

  12. W. Philips and Z. J. Kiss, Proc. IEEE,56 2072 (1968).

    Article  Google Scholar 

  13. I. F. Chang, unpublished. When a cathodochrome material is biased under a dc field the CC effect is enhanced. This has been observed in certain cathode — chromic material. The enhancement is presumably due to the migration of color absorbing centers in the material under an electric field bias.

  14. I. F. Chang, unpublished. Experimental results indicate that nondestructive readout of information stored in a CC material may be possible by scanning the target with a reading beam (reduced current level) and detecting a secondary current caused by it.

  15. O. Weigel, Z. Krist.58, 183 (1923).

    CAS  Google Scholar 

  16. G. Gross, Z. Krist.92, 284 (1935).

    CAS  Google Scholar 

  17. E. Rabinowitsch and W. C. Wood, J. Electrochem.39, 562 (19:

  18. R. M. Barrer, J. Chem. Soc. London Part III, pp. 2342–2350 (1961).

  19. I. R. Beattie, Trans. Faraday Soc.50), 581 (1954).

    Article  CAS  Google Scholar 

  20. I. R. Beattie, Trans. Faraday Soc.51, 712, (1955).

    Article  CAS  Google Scholar 

  21. I. R. Beattie and A. Byer, Trans. Faraday Soc.53, 61 (1957).

    Article  CAS  Google Scholar 

  22. R. M. Barrer and E. A. Saxon-Napier, Trans. Faraday Soc.58, 156 (1962).

    Article  Google Scholar 

  23. D. C. Freeman and D. N. Stamires, J. Chem. Phys.35, 799 (1961).

    Article  CAS  Google Scholar 

  24. D. N. Stamires, J. Chem. Phys.,36, 3174 (1962).

    Article  CAS  Google Scholar 

  25. R. A. Schoonheydt and J. B. Uytterhoeven, Molecular Sieve Zeolites I, Adv. Chem. Ser.101 (Editor R. F. Gould), 456 (1971).

  26. F. J. Jansen and R. A. Schoonheydt, J. Chem. Soc. Faraday Trans. I,69, 1338 (1973).

    Article  CAS  Google Scholar 

  27. R. Levy and A. Katchalsky, J. Colloid and Interface Sci.42, 366 (1973).

    Article  CAS  Google Scholar 

  28. L. Pauling, Z. Krist74, 213 (1930).

    CAS  Google Scholar 

  29. R. M. Barrer, Proc. Chem. Soc. London, 99 (1953).

  30. L. V. Azaroff, Elements of X-ray Crystallography, McGraw Hill Inc., N.Y. 484 (1968).

    Google Scholar 

  31. L. Broussard and D. P. Shoemaker, J. Am. Chem. Soc. 82, 1041 (1960).

    Article  CAS  Google Scholar 

  32. D. W. Breck, W. G. Eversole, R. M. Milton, T. B. Reed and T. L. Thomas, J. Am. Chem. Soc.78, 5963 (1956).

    Article  CAS  Google Scholar 

  33. T. B. Reed and P. W. Breck, J. Am. Chem. Soc.78, 5972 (1956).

    Article  CAS  Google Scholar 

  34. ASTM Index of X-ray diffraction data - Powder Diffraction File Nos. 20-1070, 21-1097 and 21-1098. Also see T. Tomisaka and H. P. Eügster, Mineral. J. (Japan)5, 249 (1968).

  35. F. M. Jaeger and F. A. Van Meile, Proc. Acad. Amsterdam30, 479 (1927).

    CAS  Google Scholar 

  36. D. Greene, New Scientist, May 11 1972.

  37. D. C. Freeman, U.S. Pat. 3,106,875 (1965).

  38. M. S. Whittingham and R. A. Huggins, J. Chem. Phys.54, 414 (1971).

    Article  CAS  Google Scholar 

  39. J. Ciric, Science,155, 689 (1967).

    Article  CAS  Google Scholar 

  40. J. F. Charnell, J. Crystal Growth,8, 291 (1971).

    Article  CAS  Google Scholar 

  41. O. K. Mel’nikov and B. N. Litvin, Sov. Phys. Crystallo.10, 216 (1965).

    Google Scholar 

  42. K. L. Bye and E. A. D. White, J. Cryst. Growth6, 355 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, D.K., Chang, I.F. Electrical properties of synthetic sodalites. J. Electron. Mater. 3, 709–729 (1974). https://doi.org/10.1007/BF02655294

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655294

Key words

Navigation