Skip to main content
Log in

Growth of InAIGaAs strained quantum well structures for reliable 0.8 μm lasers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Incorporation of indium into the quantum well materials of graded-index separate confinement heterostructure quantum well lasers has proven to be a key to imparting a much needed robustness to such lasers. By growing wells which contain both indium and aluminum along with gallium, operating wavelengths can be engineered to fall in the technologically important range of 0.8 microns, appropriate for pumping Nd:YAG. The organometallic vapor phase epitaxial growth of these strained-layer structures faces extra challenges rooted in the competing influences on the energies of the quantized states. At a minimum, meeting wavelength targets requires achieving control of the quaternary composition and of the quantum well thickness. Because laser elements are relatively large, lateral uniformity of wavelength is a critical issue. Device performance is influenced by basic material quality, which is a function of such fundamental growth parameters as temperature, V/III ratio, and growth rate. We have grown InAIGaAs structures using various combinations of growth conditions and well composition and thickness combinations, and evaluated and life-tested lasers in CW mode. The reactor’s performance in achieving composition and thickness uniformity is reported, as are data on the influence of the effects of growth conditions on device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.T. Tsang,Appl. Phys. Lett. 39, 134 (1981).

    Article  CAS  Google Scholar 

  2. W. T. Tsang,Appl. Phys. Lett. 40, 217 (1982).

    Article  CAS  Google Scholar 

  3. S.E. Fischer, R.G. Waters, D. Fekete, J.M. Balentine, Y.C. Chen and B.A. Soltz,Appl. Phys. Lett. 54, 1861 (1989).

    Article  CAS  Google Scholar 

  4. S.L. Yellen, R.G. Waters, P.K. York, K.J. Beernink and J.J. Coleman,Electron. Lett. 27, 552 (1991).

    Article  CAS  Google Scholar 

  5. D.P. Bour, J.P. Bednarz and M. Ettenberg,IEEE Photon. Technol. Lett. 2, 173 (1990).

    Article  Google Scholar 

  6. R.G. Waters, D.P. Bour, S.L. Yellen and N.F. Ruggieri,IEEE Photon. Technol. Lett. 2, 531 (1990).

    Article  Google Scholar 

  7. S.L. Yellen, R.G. Waters, Y.C. Chen, B.A. Soltz, S.E. Fischer R. Fekete, J.M. Ballintyne,Electron. Lett. 26, 2080 (1990).

    Article  Google Scholar 

  8. R.G. Waters,Prog. Quant. Electr. 15, 153 (1991).

    Article  CAS  Google Scholar 

  9. R.G. Waters, R.J. Dalby, J.A. Baumann, J.L. DeSanctis and A.H. Shepard,IEEE Photon. Technol. Lett. 3, 409 (1991).

    Article  Google Scholar 

  10. S.L. Yellen, R.G. Waters, A.H. Shepard, J.A. Baumann and R.J. Dalby,IEEE Photon. Technol. Lett. 4, 829 (1992).

    Article  Google Scholar 

  11. S.L. Yellen, A.H. Shepard, C.M. Harding, J.A. Baumann, R.G. Waters, D.Z. Garbuzov, V. Pjataev, V. Kochergin and P.S. Zory,IEEE Photon. Technol. Lett. 4, 1328 (1992).

    Article  Google Scholar 

  12. P.A. Kirkby,IEEE J. Quantum Electron. QE-11, 562 (1975).

    Article  Google Scholar 

  13. B.K. Tanner, S.J. Miles, G.G. Peterson and R.N. Sacks,Materials Letters 7, 239 (1988).

    Article  CAS  Google Scholar 

  14. K. Tanner, A.G. Turnbull, C.R. Stanley, A.H. Kean and M. McElhinney,Appl. Phys. Lett. 59, 272 (1991).

    Article  Google Scholar 

  15. D. Fekete, K.T. Chan, J.M. Ballantyne and L.F. Eastman,Appl. Phys. Lett. 49, 1659 (1986).

    Article  Google Scholar 

  16. A. Larsson, S. Forouhar, J. Cody and R.J. Lang,IEEE Photon. Tech. Lett. 2, 307 (1990).

    Article  Google Scholar 

  17. H.K. Choi and C.A. Wang,Appl. Phys. Lett. 57, 321 (1990).

    Article  CAS  Google Scholar 

  18. N.K. Dutta, J.D. Wynn, J. Lopata, D.L. Sivco and A.Y. Cho,Electronic Lett. 26, 1816 (1990).

    Article  Google Scholar 

  19. N.K. Dutta, J.D. Wynn, D.L. Sivco, A.Y. Cho and G.J. Zydik,Appl. Phys. Lett. 68, 3822 (1990).

    CAS  Google Scholar 

  20. M. Hong, M.C. Wu, Y.K. Chen, J.P. Mannaerts and M.A. Chin,J. Electron. Mater. 21, 181 (1992).

    Google Scholar 

  21. C.A. Wang, J.N. Walpole, L.J. Missaggia, J.P. Donnelly and H.K. Choi,Appl. Phys. Lett. 58, 2208 (1991).

    Article  CAS  Google Scholar 

  22. S. Adachi,J. Appl. Phys. 58, R1 (1985).

    Article  CAS  Google Scholar 

  23. S. Adachi,J. Appl. Phys. 53, 8775 (1982).

    Article  CAS  Google Scholar 

  24. Hiromitsu Asai and Kunishige Oe,J. Appl. Phys. 54, 2052 (1983).

    Article  CAS  Google Scholar 

  25. P. Chu and H.H. Weider,J. Vac. Sci. Technol B6, 1369 (1988).

    Google Scholar 

  26. K.J. Beernink, P.K. York, J.J. Coleman, R.G. Waters, J. Kim and C. Wayman,Appl. Phys. Lett. 55, 2167 (1989).

    Article  CAS  Google Scholar 

  27. J.A. Baumann, S.L. Yellen, R. Juhala, A.H. Shepard, R.J. Dalby and R.G. Waters, SPIE OE LASE ’93 Conference, Los Angeles, CA, 1993.

  28. J.W. Matthews and A.E. Blakeslee,J. Cryst. Growth 29, 273 (1975).

    Article  CAS  Google Scholar 

  29. R.D. Dupuis and P.D. Dapkus,IEEE J. Quantum. Elec. QE15, 128 (1979).

    Article  CAS  Google Scholar 

  30. R.G. Waters, D.K. Wagner, D.S. Hill, P.L. Tihanyi and B.J. Vollmer,Appl. Phys. Lett. 51, 1318 (1987).

    Article  CAS  Google Scholar 

  31. D.K. Wagner, R.G. Waters, P.L. Tihanyi, D.S. Hill, A.J. Rosa and B.J. Vollmer,J. Appl. Phys. 63, 1246 (1988).

    Article  CAS  Google Scholar 

  32. R.G. Waters, D.S. Hill and S.L. Yellen,Appl. Phys. Lett. 52, 2017 (1988).

    Article  CAS  Google Scholar 

  33. D.K. Wagner, R.G. Waters, P.L. Tihanyi, D.S. Hill, A.J. Rosa, B.J. Vollmer and M.M. Leopold,IEEE J. Quantum Elec. 24, 1258 (1988).

    Article  CAS  Google Scholar 

  34. R.G. Waters and D.S. Hill,J. Electron. Mater. 17, 239 (1988).

    Article  CAS  Google Scholar 

  35. N.G. Anderson, W.D. Laidlig, R.M. Kolbas and Y.C. Lo,J. Appl. Phys. 60, 2361 (1986).

    Article  CAS  Google Scholar 

  36. R.M. Kolbas, N.G. Anderson, W.D. Laidlig, Y. Sin, Y.C. Lo K.Y. Hsieh and Y.J. Yang,IEEE J. Quantum Elec. 24,1605 (1988).

    Article  CAS  Google Scholar 

  37. R.E. Nahory, M.A. Pollock and W.D. Johnston, Jr.,J. Appl. Phys. Lett. 33, 659 (1978).

    Article  CAS  Google Scholar 

  38. R.D. Dupuis and P.D. Dapkus,Appl. Phys. Lett. 32, 473 (1978).

    Article  CAS  Google Scholar 

  39. R.D. Dupuis and P.D. Dapkus,Appl. Phys. Lett. 31, 839(1977).

    Article  CAS  Google Scholar 

  40. R.D. Dupuis and P.D. Dapkus,Appl. Phys. Lett. 31,201 (1977).

    Article  CAS  Google Scholar 

  41. P.K York, K.J. Beernink, J.J. Alwin, J.J. Coleman and C.M. Wayman,J. Crystal Growth 107, 741 (1992).

    Article  Google Scholar 

  42. C.A. Wang and H.K. Choi,J. Electr. Mater. 20, 929 (1991).

    CAS  Google Scholar 

  43. C.A Wang, J.N. Walpole, H.K. Choi and L.J. Missaggia,IEEE Photon. Technol. Lett. 3,4 (1991).

    Article  Google Scholar 

  44. L. Buydens, P. Demeester, M. Van Ackere and P. Van Daele,Electr. Lett. 27, 618 (1991).

    Article  CAS  Google Scholar 

  45. N.A. Hughes, J.C. Connolly, D.B. Gilbert and KB. Murphy,IEEE Photon. Technol. Lett. 4, 113 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, J.A., Dalby, R.J., Waters, R.G. et al. Growth of InAIGaAs strained quantum well structures for reliable 0.8 μm lasers. J. Electron. Mater. 23, 207–216 (1994). https://doi.org/10.1007/BF02655271

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655271

Keywords

Navigation