Skip to main content
Log in

A study of x-ray damage effects on the short channel behavior of IGFET’s

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ionizing particles and radiation may play an important, albeit undesirable role in the processing of VLSI and ULSI circuits in that they can generate bulk charge in the gate insulator of IGFETs. In this regard, there is conflicting information in the literature on the effects of ionizing radiation on short channel phenomena in IGFETs. For example, Peckeraret al. in 1983 claimed that the effective channel length increases when positive coulombic charge is introduced during irradiation, resulting in a decrease in the short channel effect. Schrankleret al. in 1985 claimed in an experimental study, on the other hand, using 28.0 nm thick gate oxides and 0.9–10 μm channel lengths, that the effect is increased,i.e., the short channel effect begins at longer channel lengths. Wilson and Blue in 1982, in a theoretical study concluded that other than a uniform downward shift in theV T -channel length curve due to the presence of insulator net fixed positive charge, no effect should be observed. Because of these conflicting reports, it was decided to evaluate this behavior using two different background doping levels inn-channel structures, with physical channel lengths ranging between 1.5 and 10 μm, in 0.1 and 0.5 gWcm (100) Si. To further explore the situation, gate oxide (grown at 1000° C in O2 containing 4.5% HC1) thicknesses were varied from 17.0–35.0 nm, and the absorbed radiation dose using Al-Kα (1.5 keV) x-rays was varied between 2.4 × 106 rad (SiO2) and 2.4 × 107 rad (SiO2). For all conditions studied above, a uniform downward shift in the VT-Channel length curve was observed, essentially corroborating the theoretical conclusions of Wilson and Blue. In addition to the above, the effects of intentionally doping the gate insulator with boron (1.2 × 1012 B+ cm−2) implanted at 8 and 10 keV into 25.0 nm and 31.4 nm oxides, respectively, on short channel effects were evaluated for devices grown onp-type 0.5 Ω.cm substrates. Unlike the devices which did not have excess boron intentionally implanted into the gate insulator, it was found that higher concentrations of boron (2.0 × 1017 cm−3 in the insulator via implantation as compared to 4.2 × 1016 cm−3 incorporated in oxides during the oxide growth on 0.5 Ω.cm type (100) Silicon) leads to smaller short channel effects in unirradiated devices. On the other hand, these heavily doped oxides show a distinct worsening of the short channel effect after exposure to 2.4 × 107 rad (SiO2) using Al-Kα radiation. Thus, while normal devices exhibit little if any short channel improvement, or degradation following irradiation, intentionally doped insulators show an improvement in short channel characteristics prior to irradiation, and a worsening of the short channel effect following irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Reisman, Proc. Symp. Thin Dielectrics, Electrochemical Soc. Oct. 9–14 (1988).

  2. C. M. Osburn and A. Reisman, J. Supercomputing1, 149(1987).

    Article  Google Scholar 

  3. A. Reisman, Proc. IEEE71, 550 (1983).

    Google Scholar 

  4. D. L. Critchlow, R. H. Dennard and S. E. Schuster, IBM J. Res. Develop.17, 430 (1973).

    Article  Google Scholar 

  5. A. S. Grove and D. J. Fitzgerald, Solid-State Electron.9, 783(1966).

    Article  CAS  Google Scholar 

  6. G. T. Cheney and R. A. Kotch, Proc. IEEE56, 887 (1968).

    Google Scholar 

  7. R. C. Varshney, Electron. Lett.9, 600 (1973).

    Article  Google Scholar 

  8. H. S. Lee, Semiconductor Silicon, Elect. Chem. Soc. 791 (1973).

  9. H. S. Lee, Solid-State Electron.16, 1407 (1973).

    Article  Google Scholar 

  10. L. D. Yau, Solid-State Electron.17, 1059 (1974).

    Article  CAS  Google Scholar 

  11. K. O. Jeppsson, Electron. Lett.11, 297 (1975).

    Article  Google Scholar 

  12. K. E. Kroell and G. K. Ackermann, Solid-State Electron.19,77 (1976).

    Article  Google Scholar 

  13. R. R. Troutman and A. G. Fortino, IEEE Trans. ElectronDevicesED-24, 1266 (1977).

    Google Scholar 

  14. P. P. Wang, IEEE Trans. Electron DevicesED-25, 779 (1978).

    CAS  Google Scholar 

  15. W. Fichtner and H. W. Potzl, Int. J. Electron.46, 33 (1979).

    Google Scholar 

  16. G. W. Taylor, IEEE Trans. Electron. DevicesED-25, 337(1978).

    Google Scholar 

  17. T. Toyabe and S. Asai, IEEE Trans. Electron DevicesED-26, 453 (1979).

    Google Scholar 

  18. L. A. Akers and J. J. Sanchez, Solid-State Electron.25, 621(1982).

    Article  CAS  Google Scholar 

  19. J. R. Brews, W. Fichtner, E. H. Nicollian and S. M. Sze, IEEE Trans. Electron Device Lett.EDL-1, 2 (1980).

    Google Scholar 

  20. L. A. Akers, Solid-State Electron.24, 621 (1981).

    Article  Google Scholar 

  21. L. A. Akers and J. J. Sanchez, Solid-State Electron.25, 621(1982).

    Article  CAS  Google Scholar 

  22. M. C. Peckerar, D. B. Brown, H. C. Lin and D. I. Ma, IEEE Trans. Electron DevicesED-30, 1159 (1983).

    CAS  Google Scholar 

  23. J. W. Schrankler, R. K. Reich, M. S. Holt, D. H. Ju, J. S. Hwang, G. D. Krichner and H. L. Hughes, IEEE Trans. Nucl. Sci.NS-32, 3988 (1985).

    Google Scholar 

  24. C. L. Wilson and J. L. Blue, IEEE Trans. Nucl. Sci.NS-29,1676 (1982).

    Google Scholar 

  25. J. Y. Chen, R. Martin and D. O. Patterson, IEEE Trans. Nucl. Sci.NS-29, 1059 (1982).

    Article  Google Scholar 

  26. A. Reisman, C. J. Merz, J. R. Maldonado and W. W. Molzen,J. Electrochem. Soc.131, 1404 (1984).

    Article  CAS  Google Scholar 

  27. J. Y. Chen, R. C. Henderson, R. Martin and D. O. Patterson, IEEE Trans. Nucl. Sci.NS-29, 1681 (1982).

    CAS  Google Scholar 

  28. A. Reisman, C. K. Williams and J. R. Maldonado, J. Appl. Phys.62, 868 (1987).

    Article  CAS  Google Scholar 

  29. P. K. Bhattacharya, A. Reisman and M. C. Chen, J. Electron. Mater.17, No. 4, 273 (1988).

    Article  CAS  Google Scholar 

  30. C. K. Williams, A. Reisman, P. Bhattacharya and W. Ng, J. Appl. Phys.64 1145 (1988).

    Article  CAS  Google Scholar 

  31. T. H. Ning and H. N. Yu, J. Appl. Phys.45 5373 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, P.K., Reisman, A. A study of x-ray damage effects on the short channel behavior of IGFET’s. J. Electron. Mater. 19, 727–732 (1990). https://doi.org/10.1007/BF02655241

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655241

Key words

Navigation