Skip to main content
Log in

Circuit related issues due to radiation in hostile environments

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Various types of radiation in hostile environments cause transient and permanent changes in the devices used in complex integrated circuits. The failure of a particular IC is a function not only of the basic material and device parameter changes but also of the circuit environment in which the device is located. Circuit techniques have been developed which minimize the detrimental effects of radiation on certain types of circuits. In other cases, circuit techniques are not very effective in minimizing radiation effects. This work discusses selected issues related to the interactions between device radiation effects and circuit performance or circuit failure in a hostile radiation environment. This is not meant to be a comprehensive study of circuit effects but rather several examples are selected to illustrate the issues involved in designing circuits to operate in hostile radiation environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Stassinopoulos and J. P. Raymond, Proc. IEEE76, 1423(1988).

    Article  CAS  Google Scholar 

  2. J. R. Srour and J. M. McGarrity, Proc. IEEE76,1443 (1988).

    Article  CAS  Google Scholar 

  3. S. E. Kerns and B. D. Shafer, Proc. IEEE76, 1470 (1988).

    Article  Google Scholar 

  4. R. L. Pease, A. H. Johnston and J. L. Azarewicz, Proc. IEEE76, 1510 (1988).

    Article  CAS  Google Scholar 

  5. R. D. Rasmussen, Proc. IEEE76, 1527 (1988).

    Article  Google Scholar 

  6. B. L. Gregory, “Radiation Defects in Devices”,1972 Defects in Semiconductors, paper 36, Conf. Proc., Reading, England.

  7. L. Pease, R. M. Turfler, D. Platteter, D. Emily and R. Blice, IEEE Trans. Nucl. Sci.NS-30, 4216 (1983).

    CAS  Google Scholar 

  8. J. T. Blandford, Jr., A. E. Waskiewicz and J. C. Pickel, IEEE Trans. Nucl. Sci. 31, 1568 (1984).

    Google Scholar 

  9. J. C. Pickel, J. T. Blandford Jr., A. E. Waskiewicz and V. H. Strahan, Jr.,IEEE Trans. Nucl. Sci. 32, 4176 (1985).

    Google Scholar 

  10. A. E. Waskiewicz, J. W. Groninger, V. H. Strahan and D. M. Long, IEEE Trans. Nucl. Sci. 33, 1710 (1986).

    Google Scholar 

  11. J. R. Srour, R. A. Hartmann and K. S. Kitazaki, IEEE Trans. Nucl. Sci. 33, 1597 (1986).

    Google Scholar 

  12. R. Zuleeg, “Radiation Effects of GaAs Integrated Circuits,” in VLSI Electronics: Microstructure Science, vol. 11, GaAs Microelectronics, N. G. Einspruch and W. R. Wisseman, eds.New York, NY: Academic Press, pp. 391–437 (1985).

    Google Scholar 

  13. T. R. Oldham and J. M. McGarrity, IEEE Trans. Nucl. Sci.NS-28, 3975 (1981);NS-30, 4377 (1983).

    Google Scholar 

  14. C. W. Perkins, Appl. Phys. Lett.12, 153 (1968).

    Article  CAS  Google Scholar 

  15. P. S. Winokur, H. E. Boesch, Jr, J. M. McGarrity and F. B. McLean, IEEE Trans. Nucl. Sci.NS-24, 2113 (1977).

    Google Scholar 

  16. J. R. Schwank and W. R. Dawes, IEEE Trans. Nucl. Sci.NS-30, 4100 (1983).

    CAS  Google Scholar 

  17. J. R. Schwank, P. S. Winokur, P. J. McWhorter, F. W. Sexton, P. V. Dressendorfer and D. C. Turpin, IEEE Trans. Nucl. Sci.NS-31, 1434 (1984).

    CAS  Google Scholar 

  18. J. P. Mitchell, IEEE Trans. Elec. Dev.ED-14, 764 (1967).

    Google Scholar 

  19. H. L. Hughes, “A Survey of Radiation-Induced Perturbations in Metal-Insulator-Semiconductor Structures,”9th Annual Proc., Reliability Physics,33 (197).

  20. P. V. Dressendorfer, J. M. Soden, J. J. Hurrington and T. V. Nordstrom, IEEE Trans. Nucl. Sci.NS-28, 4281 (1981).

    Google Scholar 

  21. T. R. Oldham, A. J. Lelis, H. E. Boesh, J. M. Benedetto, F. B. McLean and J. M. McGarrity, IEEE Trans. Nucl. Sci.NS-34, 1184 (1987).

    CAS  Google Scholar 

  22. G. F. Derbenwick and B. L. Gregory, IEEE Trans. Nucl. Sci.NS-22, 2208 (1975).

    Google Scholar 

  23. B. L. Bhuva, “The Simulation of Worst-Case Operating Conditions for Integrated Circuits Operating in a Total Dose Environment,” Ph.D. Thesis, N.C. State Univ. (1987).

  24. Augmented version of curve originally published in E. L. Petersen, J. B. Langworthy and S. E. Diehl, IEEE Trans. Nucl. Sci.NS-30, 4533 (1983).

    Google Scholar 

  25. F. Larin,Radiation Effects in Semiconductor Devices, John Wiley & Sons, New York, NY (1968).

    Google Scholar 

  26. H. H. Sender and B. L. Gregory, IEEE Trans. Nucl. Sci.NS-13, (1966).

  27. R. L. Pease, R. M. Turfler, D. Platteter, D. Emily and R.Blice, IEEE Trans. Nucl. Sci.NS-30, 4216 (1983).

    Article  CAS  Google Scholar 

  28. R. Zuleeg, J. K. Notthoff and D. K. Nichols, IEEE Trans. Nucl. Sci.NS-31, 1121 (1984).

    CAS  Google Scholar 

  29. T. R. Weatherford, J. R. Hauser and S. E. Diehl, IEEE Trans. Nucl. Sci.NS-33, 1590 (1986).

    CAS  Google Scholar 

  30. L. W. Massengill, S. E. Diehl-Nagle and T. F. Wrobel, IEEE Trans. Nucl. Sci.NS-32, 4026 (1985).

    Google Scholar 

  31. L. W. Massengill, “The Simulation of Pulsed-Ionizing-Radiation-Induced Errors in CMOS Memory Circuits,” Ph.D. Thesis, N.C. State Univ. (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauser, J.R., Kerns, S.E. Circuit related issues due to radiation in hostile environments. J. Electron. Mater. 19, 671–688 (1990). https://doi.org/10.1007/BF02655236

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655236

Key words

Navigation