Skip to main content
Log in

Comparison of the diffusion of Hg into CdTe and Hg0.8Cd0.2Te

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, results published recently on Hg diffusion in the important infrared detector material, Hg0.8Cd0.2Te, and its common substrate material, CdTe, are compared and discussed. As is customary with diffusion studies in II-VI semiconductors, two component profiles were obtained in the majority of cases, each profile giving two values of the diffusivity. The values of D for the mercury diffusion in CdTe were much less than corresponding values in Hg0.8Cd0.2Te diffusion proceeds by volume diffusion followed by short circuit diffusion, whereas in CdTe diffusion is rate limiting volume diffusion involving a slow stream and a fast stream. From pressure dependency measurements, it is proposed that the slow component occurs by an interstitial mechanism at low PHg and a vacancy mechanism at high PHg, whereas in Hg0.8Cd0.2Te the reverse occurs for the fast diffusion component. In CdTe, the slow component increases systematically with etch pit density, whereas in Hg0.8Cd0.2Te, the diffusivity is independent of the quality of the material. From the comparisons, it is seen that there are some common features in the diffusion of Hg in the two materials but there are also some clear and distinct differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Maxey, P.A.C. Whiffen and B.C. Easton,Semicond. Sci. and Technol. 6, C26 (1991).

    Article  CAS  Google Scholar 

  2. K. Takita, K. Murakami, H. Otake, K. Masuda, S. Seki and H. Kudo,Appl. Phys. Lett. 44 (10), 996 (1984).

    Article  CAS  Google Scholar 

  3. J.C.H. Hogg, A. Bairstow, G.W. Matthews, D. Shaw and J.D. Stedman,Mater. Sci. Eng. B 16, 195 (1993).

    Article  Google Scholar 

  4. E.D. Jones, V. Thambipillai and J.B. Mullin,J. Cryst. Growth 118, 1 (1992).

    Article  CAS  Google Scholar 

  5. M.U. Ahmed, E.D. Jones, J.B. Mullin and N.M. Stewart,Mater. Sci. Forum 182, 51 (1995).

    Article  Google Scholar 

  6. M.U. Ahmed, E.D. Jones, J.B. Mullin and N.M. Stewart,Proc. European Mate. Res. Soc. Spring Mtg., Strasbourg, May 1995,J. Cryst. Growth, accepted for publication, 1995.

  7. M.U. Ahmed, E.D. Jones, J.B. Mullin and N.M. Stewart,Narrow Gap Semiconductors, Institute of Phys. Conf. Series 144 (1995) 60, ISBN No. 0750303417.

    CAS  Google Scholar 

  8. M.U. Ahmed, E.D. Jones, J.B. Mullin and N.M. Stewart,J. Cryst. Growth 146, 136 (1995).

    Article  CAS  Google Scholar 

  9. M.U. Ahmed, E.D. Jones, J.B. Mullin and N.M. Stewart,Proc. II-VI-95Intl. Conf., Edinburgh, August 1995,J. Cryst. Growth, accepted for publication.

  10. M.U. Ahmed, Ph.D. Thesis, Coventry University, 1995.

  11. F.A. Zaitov, L.A. Bovina and V.A. Stafeev,Fiz. Soedin. AII-BVI Mater. Vses. Soveshch. 3rd, 1, 165 (1972).

    CAS  Google Scholar 

  12. M. Brown and A.F. W. Willoughby,J. Vac. Technol. A 1 (3), 1641 (1983).

    Article  CAS  Google Scholar 

  13. M. Brown and A.F.W. Willoughby,J. Cryst. Growth 59, 27 (1982).

    Article  CAS  Google Scholar 

  14. J.S. Chen, Ph.D. Thesis, University of Southern California, 1985.

  15. M.F.S. Tang and D.A. Stevenson,J. Vac. Sci. Technol. A7 (2), 544 (1989).

    Google Scholar 

  16. D.A. Stevenson and M.F.S. Tang,J. Vac. Sci. Technol. B 9, 1615.(1991).

    Article  CAS  Google Scholar 

  17. N.A. Archer and H.D. Palfrey,J. Electron. Mater. 20, 419 (1991).

    CAS  Google Scholar 

  18. N.A. Archer, H.D. Palfrey and A.F.W. Willoughby,J. Cryst. Growth 117, 177 (1992).

    Article  CAS  Google Scholar 

  19. N.A. Archer, H.D. Palfrey and A.F.W. Willoughby,J. Electron. Mater. 22, 967 (1993).

    CAS  Google Scholar 

  20. H.D. Palfrey,J. Cryst. Growth 94, 778 (1989).

    Article  CAS  Google Scholar 

  21. D. Shaw,Semicond. Sci. Technol. 7, 1230 (1992).

    Article  CAS  Google Scholar 

  22. D. Shaw,Properties of Narrow Gap Cadmium based compounds, ed. P. Capper, EMIS Datareviews, No.10, I.E.E, publication, p. 105, 1994.

  23. J.J. Friel,Xray Image Analysis in Electron Microscopy, (Princeton, NJ: Princeton Gamma-Tech Inc., 1995), ISBN 0-9641455-0-2.

    Google Scholar 

  24. J. CreLnk.MathematicsofDiffusion,(Oxford University Press, 1975).

  25. A.D. LeClaire and A. Rabinovitch,J. Phys. C: Solid State Phys. 14, 3863 (1981).

    Article  CAS  Google Scholar 

  26. A.D. LeClaire and A. Rabinovitch,J. Phys. C: Solid State Phys. 15, 3455 (1982).

    Article  CAS  Google Scholar 

  27. A.D. LeClaire and A. Rabinovitch,J. Phys. C: Solid State Phys. 16, 2087 (1983).

    Article  CAS  Google Scholar 

  28. A.D. LeClaire,Br. J. Appl. Phys. 14, 351 (1963).

    Article  Google Scholar 

  29. T.I. Kucher,Sov. Phys. Sol. Stat. 6 (3), 623 (1964).

    Google Scholar 

  30. M.D. Sturge,Proc. Phys. Soc. 73, 297 (1959).

    Article  CAS  Google Scholar 

  31. L.Y. Wei,J. Phys. Chem. Solids. 18, 162 (1961).

    Article  CAS  Google Scholar 

  32. F. Van der Maesen and J.A. Brenkman,J. Electrochem. Soc. 102, 228 (1955).

    Article  Google Scholar 

  33. D. Zanio and T. Massopust,J.Electron.Mater. 15,103(1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, M.U., Jones, E.D., Mullin, J.B. et al. Comparison of the diffusion of Hg into CdTe and Hg0.8Cd0.2Te. J. Electron. Mater. 25, 1260–1265 (1996). https://doi.org/10.1007/BF02655017

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655017

Key words

Navigation