Skip to main content
Log in

Magnetophonon oscillations in the transverse and longitudinal magnetoresistance of Hg1−xCdxTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The transverse and longitudinal magnetoresistance (MR) as well as the longitudinal magneto-thermoelectric coefficient of n-type Hg1-xCdxTe (MCT) (0.20 < x < 0.33) have been measured at various temperatures (40 ≤ T≤ 140K) as a function of magnetic field (0 ≤ B≤18 kG). Both the transverse and the longitudinal MR clearly exhibit oscillations which are described in terms of magnetophonon (MP) transitions involving the HgTe-like and the CdTe-like longitudinal optical (LO) phonons of MC.T. The field positions of the transverse MR maxima agree with the calculated MP resonances taking into account nonparabolic bands (k • p model for narrow-gap zinc-blende-type semiconductors) and the polaron effect. Those of the longitudinal MR minima are found to coincide with the oscillation minima in the longitudinal magneto-thermoelectric coefficient. However, these minima are shifted by π/2 to lower fields with respect to the positions of the MP resonances. This phase shift was predicted by Barker1314 for the case of strong Landau level damping but has not been previously observed. In contrast, the MP oscillation minima of the longitudinal MR and the oscillation maxima of the transverse MR of n-type InSb (investigated here for comparison) occur exactly at the fields of the MP resonances. Only the oscillation minima of the longitudinal magneto-thermoelectric coefficient are slightly shifted to the side below the MP resonance fields. With regard to the band parameters and the dominant polar optical mode scattering of charge carriers InSb very much resembles MC.T. InSb, however, is a binary compound whereas MC.T is a solid solution. Thus, the phase shift by π/2 to lower fields observed for the oscillation minima in the longitudinal MR and magneto-thermoelectric coefficient of MC.T may be due to alloy scattering. The temperature coefficients of the MP resonance fields of MC.T are found to be substantially smaller than those reported by Takita et al.11 and McClure et al.10 The larger temperature coefficents are presumably due to unresolved two-phonon structures of the MP oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.L. Gurevich and Yu. A. Firsov,Sov. Phys.-JETP 13, 137 (1961),Sov. Phys.-JETP 14, 367 (1962).

    Google Scholar 

  2. S.M. Puri and T.H. Geballe,Bull. Amer. Phys. Soc. 8, 309 (1963),Semicond. and Semimet. (New York and London: Acad. Press, 1966), Vol. 1, p. 203.

    Google Scholar 

  3. Yu. A. Firsov, V.L. Gurevich, R.V. Parfeniev and S.S. Shalyt,Phys. Rev. Lett. 12, 660 (1964).

    Article  Google Scholar 

  4. V.M. Muzhdaba, R.V. Parfen’ev and S.S. Shalyt,Sov. Phys. Solid State 6, 2554 (1965), 7, 1922 (1966).

    Google Scholar 

  5. Yu. A. Firsov, V.L. Gurevich and R.V. Parfeniev,Landau Level Spectroscopy (Amsterdam: North Holland, 1991), Vol. 2, p. 1183.

  6. N.N. Berchenko and M.V. Pashkovskii,Sov. Phys. Solid State 15, 1883 (1974).

    Google Scholar 

  7. H. Kahlert and G. Bauer,Phys. Rev. Lett. 30, 1211 (1973).

    Article  CAS  Google Scholar 

  8. Kh. I. Amirkhanov, R.I. Bashirov, R.M. Gadzhieva and V.A. Elizarov,Sov. Phys. Solid State 18, 1360 (1976).

    Google Scholar 

  9. E.A. Mozhaev, V.l. Ivanov-Omskii, V.A. Mal’tseva, D.V. Mashovets and R.V. Parfen’ev,Sov. Phys. Semicond. 11,1260 (1977).

    Google Scholar 

  10. S.W. McClure, D.G. Sciler, C.L. Littler and M.W. Goodwin,J. Vac. Sci. Tech. A 3, 271 (1985).

    Google Scholar 

  11. K. Takita, A. Suzuki and K. Masuda,Solid State Commun. 58,209(1986).

    Article  CAS  Google Scholar 

  12. J. Baars, D. Brink, C. L. Littler and M. Bruder,J. Electron. Mater. 24, 1311 (1995).

    CAS  Google Scholar 

  13. J. R. Barker,J. Phys. C: Solid State Phys. 6, 880 (1973).

    Article  CAS  Google Scholar 

  14. J. R. Barker,J. Phys. C: Solid State Phys. 6, L52 (1973).

    Article  CAS  Google Scholar 

  15. P.G. Harper, J.W. Hodby and R.A. Stradling.Rep. Prog. Phys. 36, 1 (1973).

    Article  CAS  Google Scholar 

  16. R.L. Peterson,Semicond. and Semimet. (New York and London: Academic Press, 1975), Vol. 10, p. 221.

    Google Scholar 

  17. G.I. Kharus and I.M. Tsidil’kovskii,Sov. Phys. Semicond. 5, 534 (1971).

    Google Scholar 

  18. M.H. Weiler,Semic. Semimet. Vol. 16, p. 141, (Academic Press, 1981).

  19. R. Dornhaus and G. Nimtz,Springer Tracts in Modern Physics, (Berlin: Springer, 1983), Vol. 98, p. 119.

    Google Scholar 

  20. E. Litwin-Staszewska, W. Szymanska and R. Piotrzkowski,Lecture Notes In Physics (Springer-Verlag) 152, 397 (1982).

  21. C.L. Littler and D.G. Sciler,Appl. Phys. Lett. 46, 986 (1985).

    Article  CAS  Google Scholar 

  22. W. Liarokapis and E. Anastassakis,Phys. Rev. B 30, 2270 (1984).

    Article  CAS  Google Scholar 

  23. D.G. Sciler, J.R. Lowney, C.L. Littler and M.R. Loloee,J. Vac. Sci. Technol. A 8, 1237 (1990).

    Article  Google Scholar 

  24. J. Baars and F. Sorger,Solid State Commun. 10, 875 (1972).

    Article  CAS  Google Scholar 

  25. M. Seelmann-Eggebert and D. Brink, German Patent DE 40 12 453 A 1.

  26. J. Baars, D. Brink, D.D. Edwall and L.O. Bubulac,J. Electron. Mater. 22, 923 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baaks, J., Littler, C.L., Brink, D. et al. Magnetophonon oscillations in the transverse and longitudinal magnetoresistance of Hg1−xCdxTe. J. Electron. Mater. 25, 1196–1202 (1996). https://doi.org/10.1007/BF02655008

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655008

Key words

Navigation