Skip to main content
Log in

The microstructure of laterally seeded silicon-on-oxide

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The production of large scale integrated circuits in thin silicon films on insulating substrates is currently of much interest in the electronics industry. One of the most promising techniques of forming this composite structure is by lateral seeding. We have used optical microscopy and transmission electron microscopy to characterize the microstructure of silicon-on-oxide formed by scanning CW laser induced lateral epitaxy. The primary defects are dislocations. Dislocation rearrangement leads to the formation of both small angle boundaries (stable, regular dislocation arrays) and grain boundaries. The grains were found to be misoriented to the <100> direction perpendicular to the film plane by ≤ 4° and to the <100> directions in the plane of the film by ≤ 2°. Internal reflection twins are a common defect. Microtwinning was found to occur at the vertical step caused by the substrate-oxide interface if the substrate to oxide step height was > 120 nm. The microstructure is continuous across successive scan lines. Microstructural defects are found to initiate at the same topographical location in different oxide pads. We propose that this is due to the meeting of two crystallization growth fronts. The liquid silicon between the fronts causes large stresses in this area because of the 9% volume increase during solidification. The defects observed in the bulk may form by a similar mechanism or by dislocation generation at substrate-oxide interface irregularities. The models predict that slower growth leads to improved material quality. This has been observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M. Manasevit, J. Cryst. Growth., 22 (1974) 125.

    Article  CAS  Google Scholar 

  2. D.D. Rathman, D.J. Silversmith, J.A. Burns and C.O. Bozler, Recent News Paper 699, The Electrochem. Soc. Fall Meeting, Oct. 1980, Hollywood, Fl.

  3. R.J. Dexter, S.B. Watelski and S.T. Picraux, Appl. Phys. Lett.,23 (1973) 455.

    Article  CAS  Google Scholar 

  4. J. Maserjian, Solid State Electronics Journal,6 (1963) 477.

    Article  CAS  Google Scholar 

  5. A. Gat, L. Gerzberg, J.F. Gibbons, T.J. Magee, J. Peng and J.D. Horg, Appl. Phys. Lett.,33 (1978) 775.

    Article  CAS  Google Scholar 

  6. M.W. Geis, D.L. Flanders and H.I. Smith, Appl. Phys. Lett.,35 (1979) 71.

    Article  CAS  Google Scholar 

  7. B.Y. Tsaur, J.C.C. Fan, M.W. Geis, D.J. Silversmith and R.W. Mountain, Appl. Phys. Lett., 39 (1981) 561.

    Article  CAS  Google Scholar 

  8. K. Imai, Solid State Electronics,24 (1981) 159.

    Article  CAS  Google Scholar 

  9. M. Tamura, H. Tamura and T. Tokuyama, Jap. J. Appl. Phys.,19 (1980) L23.

    Article  CAS  Google Scholar 

  10. H.W. Lam, R.F. Pinizzotto and A.F. Tasch Jr., The Electrochem. Soc. Extended Abstracts,80–2 (1980) 1198 and J. Electrochem. Soc.,128 (1981) 1981.

    Google Scholar 

  11. H.W. Lam, Z.P. Sobczak, R.F. Pinizzotto and A.F.Tasch Jr., IEDM Tech. Digest, Washington, D.C. (Dec. 1980) 559.

  12. J.C.C. Fan, M.W. Geis and B.Y. Tsaur, IEDM Tech. Digest, Washington, D.C. (Dec. 1980) 845.

  13. J.C.C. Fan, M.W. Geis and B.Y. Tsaur, Appl. Phys. Lett.,38 (1981) 365.

    Article  CAS  Google Scholar 

  14. A.F. Tasch Jr., T.C. Holloway, K.F. Lee and J.F. Gibbons, Electr. Lett.,15 (1979) 435.

    Article  CAS  Google Scholar 

  15. T.I. Kamins, J. Electrochem. Soc.,128 (1981) 1824.

    Article  CAS  Google Scholar 

  16. P. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley and M.J. Whelan, ‘Electron Microscopy of Thin Crystals’, Robert E. Krieger Publishing Company, 1977, pp. 116–117.

  17. J.T. Schott, Electronic Mater. Conf., June 1981, Santa Barbara, CA.

  18. A. Gat and J.F. Gibbons, Appl. Phys. Lett.,32 (1979) 142.

    Article  Google Scholar 

  19. F. Secco d’Aragona, J. Electrochem. Soc.,119 (1972) 948.

    Article  CAS  Google Scholar 

  20. D. Hull, ‘Introduction to Dislocations’, Pergamon Press, 1965, pp. 175–200.

  21. H.F. Wolf, ‘Silicon Semiconductor Data’, Pergamon Press, 1969, pg. 3.

  22. D. Hull, ‘Introduction to Dislocations’, Pergamon Press, 1965, pp. 157–158.

  23. S.M. Hu, J. Appl. Phys.,45 (1974) 1567.

    Article  CAS  Google Scholar 

  24. J.R. Patel, K.A. Jackson and H. Reiss, J. Appl. Phys.,48 (1977) 5279.

    Article  CAS  Google Scholar 

  25. H. Foll, U. Gosele and B.O. Kolbesen, in ‘Semiconductor Silicon 1977’, edited by H.R. Huff and E. Sirtl, The Electrochem. Soc., 1977, pp. 565–574.

  26. R.A. Lemons and M.A. Bosch, Electronic Mater. Conf., June 1981, Santa Barbara, CA.

  27. J. Chikawa and F. Sato, ‘Defects in Semiconductors’, edited by J. Narayan and T.Y. Tan, North Holland, 1981, pp. 317–332.

  28. R.F. Pinizzotto, H.W. Lam and B.L. Vaandrager, Texas Instruments Technical Report 08-81-40, November 1981. Submitted to Appl. Phys. Lett.

  29. K. Shibata, T. Inoue and T. Takigawa, Appl. Phys. Lett.39 (1981) 645.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinizzotto, R.F., Lam, H.W. & Vaandrager, B.L. The microstructure of laterally seeded silicon-on-oxide. J. Electron. Mater. 11, 413–434 (1982). https://doi.org/10.1007/BF02654680

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654680

Key Words

Navigation