Skip to main content
Log in

Stress induced hydrogen redistribution in commercial titanium alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The change in hydrogen concentration as a function of applied strain has been studied in commercial titanium alloys that included threeβ-phase, twoα-phase, and an (α + β)-phase Ti-6Al-4V alloy with differingα/β morphologies.Insitu measurements were made using a nondestructive nuclear technique on samples for which uniaxial compressive and tensile stresses were applied by four-point bending.

Theβ-phase alloys exhibited hydrogen redistribution under an elastic stress gradient, but no further change was discernible accompanying plastic deformation. The extent of hydrogen concentration change for theβ-phase alloys was of the order of 4 to 6 pct for a 620 MPa stress gradient. This is less than would be predicted based on available data for the partial molal volume of hydrogen. Diffusion coefficients in a stress gradient were also determined and are consistent with those measured inβ-phase titanium at elevated and room temperatures. Within the experimental sensitivities there was no evidence of hydrogen redistribution with applied stress for theα-phase and Ti-6Al-4V alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Bernstein and A. W. Thompson:Hydrogen in Metals, ASM, Metals Park, OH, 1974.

    Google Scholar 

  2. A. W. Thompson and I. M. Bernstein:Effect of Hydrogen on Behavior of Materials, AIME, New York, 1976.

    Google Scholar 

  3. H. H. Johnson, J. G. Morlet, and A. R. Troiano:Trans. TMS-AIME, 1958, vol. 212, p. 528.

    CAS  Google Scholar 

  4. A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  5. D. G. Westlake:Trans. ASM, 1969, vol. 62, p. 1000.

    CAS  Google Scholar 

  6. R. Dutton, K. Nuttal, M. P. Puls and L. A. Simpson:Met. Trans. A, 1977, vol. 8A,p. 1553.

    Article  CAS  Google Scholar 

  7. J. C. M. Li, R. A. Oriani, and L. S. Darken:Z. Phys. Chem., Neue Folge, 1966, vol.49, p. 271.

    Google Scholar 

  8. R. A. Oriani:Proc. of Conference of Fundamental Aspects of Stress Corrosion Cracking, R. W. Staehle, A. J. Forty, and D. van Rooyen, eds., p. 32, NACE, Houston, TX, 1969.

    Google Scholar 

  9. J. O. M. Bockris and P. K. Subramanyan:Acta Metall., 1971, vol. 19, p. 1205.

    Article  CAS  Google Scholar 

  10. R. Chopra and J. C. M. Li:Scr. Metall., 1972, vol. 6, p. 543.

    Article  CAS  Google Scholar 

  11. H. A. Wriedt and R. A. Oriani:Acta Metall., 1970, vol. 18, p. 753.

    Article  CAS  Google Scholar 

  12. J. O. M. Bockris, W. Beck, M. A. Genshawl, P. K. Subramanyan, and F. S. Williams:Acta Metall., 1971, vol. 19, p. 1209.

    Article  CAS  Google Scholar 

  13. J. L. Waisman, G. Sines, and L. B. Robinson:Met. Trans., 1973, vol. 4, p. 291.

    CAS  Google Scholar 

  14. G. Schaumann, J. Volkl, and G. Alefeld:Phys. Status Solidi, 1970, vol. 42, p. 401.

    CAS  Google Scholar 

  15. P. N. Adler and R. L. Schulte:Scr. Metall., 1978, vol. 13, p. 669.

    Article  Google Scholar 

  16. E. A. Kamykowski, F. J. Kuehne, E. J. Schneid, and R. L. Schulte:Nucl. Instrum. Methods, 1979, vol. 165, p. 573.

    Article  CAS  Google Scholar 

  17. G. M. Padawer, D. J. Larson, Jr., and P. N. Adler:Met. Trans., 1971, vol. 2, p. 2287.

    CAS  Google Scholar 

  18. P. N. Adler, E. A. Kamykowski, and G. M. Padawer:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., p. 623, ASM, Metals Park, OH, 1974.

    Google Scholar 

  19. N. E. Paton, O. Buck, and J. C. Williams:Scr. Metall., 1975, vol. 9, p. 687.

    Article  CAS  Google Scholar 

  20. J. Crank:The Mathematics of Diffusion, p. 58, Clarendon Press, Oxford, 1956.

    Google Scholar 

  21. J. J. DeLuccia:Report No. NADC-76207-30, Naval Air Development Center, Warminster, PA, 1976.

  22. R. J. Wasilewski and G. L. Kehl:Metallurgia, 1954, vol. 50, p. 225.

    Google Scholar 

  23. T. P. Papazoglou and M. T. Hepworth:Trans. TMS-AIME, 1968, vol. 242, p. 682.

    CAS  Google Scholar 

  24. D. L. Johnson and H. G. Nelson:Met. Trans., 1973, vol. 4, p. 569.

    Article  CAS  Google Scholar 

  25. N. E. Paton and J. C. Williams:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., p. 409, ASM, Metals Park, OH, 1974.

    Google Scholar 

  26. N. E. Paton and R. A. Spurting:Met. Trans. A, 1976, vol. 7A, p. 1769.

    Article  CAS  Google Scholar 

  27. J. Jinoch, S. Ankem, and H. Margolin:Mater. Sci. Eng., 1978, vol. 34, p. 203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, P.N., Schulte, R.L., Schneid, E.J. et al. Stress induced hydrogen redistribution in commercial titanium alloys. Metall Trans A 11, 1617–1623 (1980). https://doi.org/10.1007/BF02654526

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654526

Keywords

Navigation