Skip to main content
Log in

A dynamic simulation of a lead blast furnace

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A dynamic model has been developed to simulate the operation of the stack zone of a lead blast furnace. The mathematical formulation of the governing equations of change leads to a system of 2nd order partial differential equations, which is solved by finite difference methods. A reduction model of ash-layer diffusion controlled mechanism, which allows the stepwise reduction to the lowest oxide or metal thermodynamically possible for the local gas composition within the sinter, is employed in this model. The surface reaction and the internal diffusion in the porous solid particles are taken into account in the coke gasification reaction. The profiles of the temperatures of gases and solids, solid compositions, and gas compositions and pressure in both radial and axial directions are predicted by the model. The results provide a good representation of the experimental data obtained for the blast furnace at Brunswick Mining and Smelting Corp., Ltd., New Brunswick, Canada and also of the less extensive data available for the Cominco blast furnace at Trail, British Columbia, Canada. In addition to the modelling of the stack, a mass and energy balance for the bosh zone is also included in the present calculation. The improvement of coke efficiency due to oxygen enrichment in the blast air for the Brunswick Furnace were interpreted semiquantitatively. The effect of sinter size distribution on the furnace performance has also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Lahiri and V. Seshadri:J. Iron SteelInst., 1969, vol. 207, no. 3, p. 293.

    CAS  Google Scholar 

  2. J. T. Chao, P. J. Dugdale, D. R. Morris, and F. R. Steward:Metall. Trans. B, 1978, vol. 9B, p. 293.

    CAS  Google Scholar 

  3. J. E. Cowperthwaite, P. J. Dugdale, C. J. F. Landry, D. R. Morris, F. R. Steward, and T. C. W. Wilson:Metall. Trans. B, 1980, vol. 1 IB, p. 291.

    Google Scholar 

  4. J. T. Chao: M. Eng. Thesis, University of New Brunswick, Fredericton, N. B., Canada, 1977.

    Google Scholar 

  5. G. W. Toop: private communication, Cominco Ltd., Trail, B.C., Canada.

  6. J. L. Leroy, P. J. Leroir, and L. E. Escoyez:AIME World Symposium on Mining and Metallurgy of Lead and Zinc,C. H. Cotterill and J. M. Cigan, eds., vol. II, see VI, chap. 28, 1970.

  7. B. Stalhane and T. Malmberg:Stahl Eisen, 1929, vol. 49, p. 1835; 1930, vol. 50, p. 969; 1931, vol. 51, p. 716.

    Google Scholar 

  8. J. O. Edström:J. Iron Steel Inst., 1953, vol. 175, p. 289.

    Google Scholar 

  9. W. M. McKewan:Trans. TMS-AIME, 1960, vol. 218, p. 2; 1961, vol. 221, p. 140; 1962, vol. 224, p. 2.

    CAS  Google Scholar 

  10. R. H. Spitzer: Ph.D. Thesis, Carnegie Institute Technology, Pittsburgh, PA, 1966.

    Google Scholar 

  11. W. K. Lu and G. Bitsianes:Can. Met. Q., 1968, vol. 7, no. 1, p. 3.

    CAS  Google Scholar 

  12. E. T. Turkdogen and J.V..VintersMetall. Trans., 1971, vol. 2, p. 3175.

    Google Scholar 

  13. E. Kawasaki, J. Sanscrainte, and T. J. Walsh:J. Am. Inst. Chem. Eng., 1962, vol. 8, no. 1, p. 48.

    CAS  Google Scholar 

  14. J. M. Quets, M. E. Wadsworth, and J. R. Lewis:Trans. TMS-AIME, 1960, vol. 218, p. 545; 1961, vol. 221, p. 1186.

    CAS  Google Scholar 

  15. N. J. Themelis and W. H. Craurrin:J. Am. Inst. Chem. Eng., 1962, vol. 8, p. 437;Trans. TMS-AIME, 1963, vol. 227, 290.

    CAS  Google Scholar 

  16. R. G. Olsson and W. M. McKewan:Trans. TMS-AIME, 2966, vol. 236, p. 1518;Metall. Trans.., 1970, vol. 1, p. 1507.

    Google Scholar 

  17. R. H. Spitzer, R. S. Manning, and W. O. Philbrook:Trans. TMS-AIME, 1966, vol. 236, p. 726.

    CAS  Google Scholar 

  18. C. M. Ufret and T. J. Williams: Report No. 9, Purdue Laboratory for Applied Industrial Control, Purdue Univ., West Lafayette, IN, 1977.

  19. Y. K. Rao and I. J. Lin:Can. Met. Q.,, 1973, vol. 12, p. 125.

    CAS  Google Scholar 

  20. R. H. Spitzer, F. S. Manning, and W. O. Philbrook:Process Simulation and Control in Iron and Steelmaking, Met. Soc. Conf, J. M. Uys and H. L. Bishop, eds, vol. 32, p. 85, 1966.

  21. H. E. Barner, F. S. Manning and W. O. Philbrook:Trans. TMS-AIME, 1963, vol. 227, p. 897.

    CAS  Google Scholar 

  22. E. E. Peterson:Chemical Reaction Analysis, p. 221, Prentice-Hall, Inc. New York, 1965.

    Google Scholar 

  23. E. Singer and R. H. Wilhelm:Ind. Eng. Chem., 1950, vol. 46, p. 343.

    CAS  Google Scholar 

  24. O. Kunii and J. M. Smith:J. Am. Inst. Chem. Eng., 1959, vol. 5, p. 467.

    Google Scholar 

  25. S. Yagi and O. Kunii:J. Am. Inst. Chem. Eng., 1960, vol. 6, p. 71.

    Google Scholar 

  26. C. N. Satterfield:Mass Transfer in Heterogeneous Catalysts, p. 37, MIT Press, Cambridge, MA, 1970.

    Google Scholar 

  27. A. Wheeler:Adv. Catal., 1951, vol. IV, p. 269.

    Google Scholar 

  28. A. Wheeler:Catalysis, 1975, P. H. Emmett, ed. vol. 2, Reinhold, New York.

    Google Scholar 

  29. P. B. Weizz and A. B. Schwartz:J. Catal., 1962, vol. 1, p. 399.

    Article  Google Scholar 

  30. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird:Molecular Theory of Gases and Liquids, p. 539, Wiley, New York, 1954.

    Google Scholar 

  31. C. N. Satterfield:Mass Transfer in Heterogenous Catalysis, MIT Press, p. 42, Cambridge, MA, 1970.

    Google Scholar 

  32. R. B. Bird, W. F. Stewart, E. N. Lightfoot:Transport Phenomena, p. 411, Wiley, New York, 1960.

    Google Scholar 

  33. R. B. Bird,et al: ibid, p. 255 and p. 23.

  34. J. Szekely, J. W. Evans, and H. Y. Sohn:Gas-Solid Reactions, p. 258, Academic Press, 1976.

  35. C. J. Smithells:Metal Reference Book, vol. II, 3rd ed., Buterworth, London, 1962.

    Google Scholar 

  36. R. H. Perry and C. H. Chilton:Chemical Engineer’s Handbook, 5th ed., McGraw-Hill, New York, 1973.

    Google Scholar 

  37. W. F. Ames:Nonlinear Partial Differential Equations in Engineering, p. 345, Academic Press, New York, 1965.

    Google Scholar 

  38. A. G. Matyas and M. D. Street:Can. Min. Metall. Bull., 1977, vol. 70, no. 10, p. 132–36.

    CAS  Google Scholar 

  39. J. H. Strassburger, D. C. Brown, T. E. Dancy, and R. L. Stephenson:Blast Furnace-Theory and Practice, vol. 2, Bordon and Breach Science Publishers, New York, p. 777, p. 804, 1969.

    Google Scholar 

  40. J. Szekely and N. J. Themelis:Rate Phenomena in Process Metallurgy, p. 665, Wiley-Interscience, New York, 1970.

    Google Scholar 

  41. V. Stanek and J. Szekely:Trans. TMSAIME, 1969, vol. 245, p. 1185.

    CAS  Google Scholar 

  42. J. H. Strassburger, D. C. Brown, T. E. Dancy, and R. L. Stephenson: lBlast Furnace-Theory and Practice, vol. 1, p. 47, Bordon and Breach Science Publishers, New York.

  43. P. L. Fowler: unpublished report, Broken Hill Associated Smelters Pty. Ltd., Port Pines, So. Aus., Australia.

  44. S. Ergun: U. S. Bur Mines Bull., no. 598, 1962.

Download references

Author information

Authors and Affiliations

Authors

Additional information

JOHN T. CHAO, formerly a graduate student in the Department of Chemical Engineering, University of New Brunswick, Fredericton, N.B., Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, J.T. A dynamic simulation of a lead blast furnace. Metall Trans B 12, 385–402 (1981). https://doi.org/10.1007/BF02654473

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654473

Keywords

Navigation