Skip to main content
Log in

Electromagnetic stirring with alternating current during electroslag remelting

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

An alternating current (AC)-operated electromagnetic stirring (EMS) device, using line frequency, was designed and built to operate on a laboratory electroslag remelting (ESR) furnace for 150-mm-diameter ingots. Laboratory-scale experiments were conducted employing both 4340 alloy steel and INCONEL 718 alloy as electrode material. The initiation of stirring is accompanied by a thin strip of segregated material and favors the formation of spot segregation. Changes produced in the fluid flow conditions in the liquid pool ahead of the solidification front result in a transition from a highly directional columnar to an unoriented, branched structure. Except for small pockets of segregated liquid, the flow of molten metal does not penetrate into the mushy zone. Both electrode material and molten metal pool shape play an important role on the extent of promoting an equiaxed structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hoyle:Electroslag Processes, Applied Science Publishers, London, 1983.

    Google Scholar 

  2. “The Electroslag Melting Process,” Bull. No. 669, U.S. Bureau of Mines, Washington, DC, 1976.

  3. A. Mitchell and R.M. Smailer:Int. Met. Rev., 1979, vol. 24 (5–6), pp. 231–64.

    CAS  Google Scholar 

  4. F. J. Zanner and L.A. Bertram:Proc. 8th Int. Conf. on Vacuum Metallurgy, Voest-Alpine AG, Linz, Austria, 1985, vol. 1, pp. 512–52.

    Google Scholar 

  5. A.P. Karyakin, F.I. Shved, and Yu.D. Smirnov:Stal Engl., 1970, no. 1, pp. 57-59.

  6. A.A. Nikulin, V.D. Artm’ev, L.A. Volokhowskii, M.M. Klyuev, U.V. Topilin, S.E. Volkov, and A.A. Sharapov:Sb. Tr. Tsentr. Nanchno-Issled. Inst. Chern. Metall., 1970, no. 75, pp. 161-67.

  7. K. Miyazawa, T. Fukaya, S. Asai, M. Choudhary, and J. Szekely:Trans. ISIJ, 1985, vol. 25, pp. 386–93.

    CAS  Google Scholar 

  8. V.C.A. Ferraro and C. Plumpton:An Introduction to Magneto- fluid Mechanics, Clarendon Press, Oxford, 1966, 2nd ed.

    Google Scholar 

  9. J.P. Birat and J. Chon’e:Ironmaking and Steelmaking, 1983, vol. 10(6), pp. 269–81.

    CAS  Google Scholar 

  10. H.S. Marr:Proc. Symp. Metallurgical Applications of Magneto- hydrodynamics, Cambridge, Sept. 6–10, 1982, H.K. Moffat and M.R.E. Proctor, eds., The Metals Society, London, 1984, pp. 143–53.

    Google Scholar 

  11. G. Beynon: Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1971.

    Google Scholar 

  12. A.H. Dilawari and J. Szekely:Metall. Trans. B, 1978, vol. 9B, pp. 77–87.

    CAS  Google Scholar 

  13. J. Kreyenberg and K. Schwerdtfeger:Arch. Eisenhuettenwes., 1979, vol. 50 (1), pp. 1–6.

    Google Scholar 

  14. M. Choudhary and J. Szekely:Metall. Trans. B, 1980, vol. 11B, pp. 439–53.

    Google Scholar 

  15. A. Jardy and D. Ablitzer:Proc. Symp. Mathematical Model- ling of Materials Processing Operations, Palm Springs, CA, Nov. 29–Dec. 2, 1987, J. Szekely, L.B. Hales, H. Henein, N. Jarret, K. Tajamani, and I. Samarsekera, eds., TMS-AIME, Warrendale, PA, 1988, pp. 1027–40.

    Google Scholar 

  16. R. Schlatter:J. Met., 1972, vol. 24, pp. 17–25.

    CAS  Google Scholar 

  17. G. Bruckmann, G. Sick, and K. Schwerdtfeger:Metall. Trans. B, 1983, vol. 14B, pp. 761–64.

    Google Scholar 

  18. J. Campbell and D.I. Dawson: British Iron and Steel Research Association Open Report MG/58/77, London, 1971, 42 pp.

  19. D.R. Frankl:Electromagnetic Theory, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1986, p. 268.

    Google Scholar 

  20. J.M. Sathaye: M.A.Sc. Thesis, University of British Columbia, Vancouver, BC, Canada, 1983.

    Google Scholar 

  21. P.G. Clites and R.A. Beall: “Inductoslag Melting of Titanium,” Rep. of Invest. No. 7268, U.S. Dept. of the Interior, Bureau of Mines, Washington, DC, June 1969.

    Google Scholar 

  22. O. Haida, H. Kitaoka, Y. Habu, S. Kakihara, H. Bada, and S. Shiraishi:Trans. ISIJ, 1984, vol. 24, pp. 891–98.

    Google Scholar 

  23. T. Takahashi, K. Ichikawa, M. Kudou, and K. Shimahara:Trans. ISIJ, 1976, vol. 16, pp. 283–91.

    CAS  Google Scholar 

  24. H. Fredriksson, N. El Mahallawy, M. Taha, L. Xiang, and G. Wanglov:Macrosegringar och strukturförändingar av svalningskontraktion och patvingad konvktion vid stelning av metallegeringar, Institut für Metallernas Gjutning, Stockholm, 1986, supp. VI, 44 pp.

  25. Yu.I. Zabaluev, E.I. Moshkevich, G.A. Buryakovski, G.M. Brodskii, and A.A. Nikulin:Steel USSR, 1973, vol. 3, pp. 644–45.

    Google Scholar 

  26. S.D. Ridder, R. Mehrabian, and S. Kou;Proc. Conf. on Modeling of Casting and Welding Processes, Ridge, NH, Aug. 3–8, 1980, H.D. Brody and D. Apelian, eds., TMS-AIME, Warrendale, PA, pp. 261–84.

    Google Scholar 

  27. F. Weinberg:Metall. Trans. B, 1984, vol. 15B, pp. 681–84.

    Google Scholar 

  28. F.J. Zanner and L.A. Bertram: Report No. SAND50-1156, Sandia National Laboratories, Albuquerque, NM, 1980.

  29. S. Sawa, S. Shibuya, and S. Kinbara:Proc. 4th Int. Symp. of Electroslag Remelting Processes, Tokyo, June 7–8, 1973, The Iron and Steel Institute of Japan, Tokyo, pp. 129–34.

    Google Scholar 

  30. A. Mitchell:Can. Metall. Q., 1981, vol. 20 (1), pp. 101–12.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, A., Hernandez-Morales, B. Electromagnetic stirring with alternating current during electroslag remelting. Metall Trans B 21, 723–731 (1990). https://doi.org/10.1007/BF02654251

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654251

Keywords

Navigation