Skip to main content
Log in

Hematite single crystal reduction into magnetite with CO-CO2

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

In view of the striking discrepancies among previous authors as regards the transition between porous and lamellar magnetites, we have carried out a wide series of experiments with single crystals prepared by chemical vapor transport. In addition to the classical temperature and CO pct parameters, which varied over a large range (400 ≤T ≤ 1000 ≤C and 2 ≤ CO pct ≤ 50), we also investigated the influence of the crystal size and of the fractional weight change. Through observation of a great number of cross-sections of partially reduced crystals, we established that lamellar magnetite is favored by high temperature and low CO pct. This is explained by consideration of the conditions governing the competition between cation diffusion in the semi-coherent hematite-magnetite interface and chemical reaction rate. At low temperatures, the crystals are severely fractured, because hematite is not plastic enough, especially at a high CO2 pct. The kinetic data are analyzed with the shrinking-core model, where the reaction interface is topochemical. The chemical rate constant thus obtained is ϕ = 69 exp(−8950/T), in mol(CO) · m−2 · s−1, for crystals in the range 50 to 150 μm andT varying from 500 to 900 °C. Bigger crystals yield a slightly higher preexponential term, confirming that porous diffusion does not rule the kinetics. The nucleation frequency has also been evaluated; it tends toward a kind of saturation at around 700 °C with a value of 10 to 109 s−1. The nuclei growth rate is in reasonable agreement with direct measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ünal and A. Bradshaw:Metall. Trans. B, 1983, vol. 14B, pp. 743–52.

    Article  ADS  Google Scholar 

  2. P. Hayes and P. Grieveson:Metall. Trans. B, 1981, vol. 12B, pp. 319–26, P. Hayes and P. Grieveson:Metall. Trans. B, 1981, vol. 12B, pp. 579–87.

    Article  ADS  CAS  Google Scholar 

  3. P. R. Swann and N. J. Tighe:Metall. Trans. B, 1977, vol. 8B, pp. 479–87.

    Article  CAS  Google Scholar 

  4. A. Bessières: Thesis, Metz, 1984.

  5. S. Sayama, Y. Suzuki, Y. Ueda, and S. Yokoyama:Trans. ISIJ, 1979, vol. 19, pp. 521–28.

    CAS  Google Scholar 

  6. C. Beaulieu, Y. Berube, F. Claisse, and A. Van Neste:Mém. Sci. Rev. Métall., 1970, vol. 67, pp. 471–75.

    CAS  Google Scholar 

  7. S. El Moujahid: Thesis, Nancy, 1983; S. El Moujahid and A. Rist:Mem. Et. Sci. Rev. Met., 1984, pp. 285–93.

  8. G. Geiger and J. B. Wagner:Trans. TMS-AIME, 1965, vol. 233, pp. 2092–2100.

    CAS  Google Scholar 

  9. R. Walker and D. Carpenter:JISI, 1970, vol. 208, pp. 67–74.

    CAS  Google Scholar 

  10. S. Khalafalla, G. Reimers, and M. Baird:Metall. Trans., 1974, vol. 5, pp. 471–75.

    Article  Google Scholar 

  11. J. J. Heizmann: Thesis, Metz, 1973; J. J. Heizmann, P. Becker, and R. Baro:Archiv. Einsenhütt., 1974, vol. 45, pp. 765–70 andMém. Sci. Rev. Métall., 1975, vol. 72, pp. 285–94; P. Becker: Thesis, Metz, 1978; J. Bessières, A. Bessières, and J. J. Heizmann:Mém. Sci. Rev. Métall., 1981, pp. 93–99.

  12. A. Bradshaw and A. Matyas:Metall. Trans. B, 1976, vol. 7B, pp. 81–87.

    ADS  CAS  Google Scholar 

  13. H. Moineau and R. Baro:Bull. Soc. Fr. Mineral. Crist., 1971, vol. 94, pp. 444–49.

    CAS  Google Scholar 

  14. J. Bernai, D. Dasgupta, and A. Mackay:Nature, 1957, vol. 180, pp. 645–47.

    Article  ADS  Google Scholar 

  15. R. Baro, H. Moineau, and J. J. Heizmann:Adv. X-Ray Anal., 1968, vol. 11, pp. 473–81.

    Google Scholar 

  16. M. Blackmann and G. Kaye:Proc. Phys. Soc., London, 1960, vol. 55, pp. 364–68.

    Google Scholar 

  17. D. Jeulin:Rev. Metall. CIT, 1981, pp. 481–99.

  18. L. Bogdandy and H. J. Engell:The Reduction of Iron Ores, Springer Verlag, Berlin, 1971.

    Google Scholar 

  19. E. Turkdogan and J. Vinters:Metall. Trans., 1972, vol. 3, pp. 1561–74.

    Article  CAS  Google Scholar 

  20. P. Kofstad:Non-stoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, Wiley Interscience, 1972.

  21. P. Baguley, D. H. St. John, and P. C. Hayes:Metall. Trans. B, 1983, vol. 14B, pp. 513–14.

    Article  ADS  CAS  Google Scholar 

  22. M. Et-Tabirou, B. Dupré, and C. Gleitzer:React. Solids, 1986, vol. 1, p. 329.

    Article  CAS  Google Scholar 

  23. E. Petersen:Chemical Reaction Analysis, Prentice Hall, Englewood Cliffs, NJ, 1965, p. 152.

    Google Scholar 

  24. Handbook of Chemistry and Physics, 57th ed., CRC Press, 1976–77.

  25. E. Fuller, P. Schettler, and J. Giddings:Ind. Eng. Chem., 1966, vol. 58, pp. 18–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student

Rights and permissions

Reprints and permissions

About this article

Cite this article

Et-Tabirou, M., Dupré, B. & Gleitzer, C. Hematite single crystal reduction into magnetite with CO-CO2 . Metall Trans B 19, 311–317 (1988). https://doi.org/10.1007/BF02654216

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654216

Keywords

Navigation