Skip to main content
Log in

Melting metal powder particles in an inductively coupled r.f. plasma torch

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A numerical model is developed for the prediction of melting metal powder particles in an inductively coupled r.f. plasma torch. The model is developed for dilute spray conditions where the gas phase flow is not affected by the loading condition. The governing equation for the gas phase flow contains the source terms from the electromagnetic field. The theoretical calculations have shown that particle thermal history and its velocity are greatly affected by the plasma operating conditions (i.e., carrier gas flow rate, injector location, and power level,etc.). Without the proper control of particle trajectories, particles may bounce around the fireball and exit the torch as unmelted or resolidified solid particles. With the insertion of an injector or injecting particles with a high carrier gas flow rate, the predictions show that even relatively small size particles can be directed into the fireball and maintained in the molten state before they impact on the substrate. Consequently, more uniform and dense deposits can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C D :

drag coefficient

C p :

specific heat

d p :

diameter of the particle

E :

electric field

Fr :

electromagnetic force

f L :

liquid fraction in particle

g :

gravity

h t :

heat transfer coefficient

h :

enthalpy

H :

magnetic field

I :

coil current

k :

thermal conductivity

L 1L2,Lt :

r.f. torch dimensions (see Figure 2)

N :

number of turns in the induction coil

r :

radial direction

Re:

Reynolds number

T :

temperature

t :

time

u :

axial velocity

v :

radial velocity

w :

swirl velocity

z :

axial direction

p :

pressure

P :

power into the discharge zone

Pr:

Prandtl number

Q p :

volumetric ohmic heating

Q r :

volumetric radiation

Q 1 :

carrier gas flow rate

Q 2 :

plasma gas flow rate

Q 3 :

sheath gas flow rate

Q o :

total gas flow rate

r 3,Rc :

r.f. torch dimensions (see Figure 2)

U o :

inlet mean velocity

μ:

dynamic viscosity

v:

kinematic viscosity

ρ:

density

ξ:

magnetic permeability

θ:

tangential direction

σe :

electrical conductivity

λf :

latent heat of fusion

λe :

latent heat of evaporation

χ:

phase angle between magnetic and electric fields

ω:

oscillator frequency

ω-1 :

conductivity

f :

evaluated at film temperature

g :

plasma gas

p :

particle surface

R :

relative velocity

∞:

evaluated at free stream state

+:

dimensional quantity

0:

reference condition

References

  1. T. B. Reed:J. of Appl. Phys., 1961, vol. 32, pp. 821–32.

    Article  ADS  CAS  Google Scholar 

  2. H. U. Eckert:High Temp. Sci., 1970, vol. 6, pp. 99–121.

    Google Scholar 

  3. M. T. Boulos:Pure and Appl. Chem., 1985, vol. 37, no. 9, pp. 1321–52.

    Article  Google Scholar 

  4. M. P. Freeman and J. D. Chase:J. of Appl. Phys., 1968, vol. 39, pp. 180–93.

    Article  ADS  Google Scholar 

  5. A. E. Mensing and L. R. Boedeker: “Theoretical Investigation of R. F. Induction Heated Plasma,” 1969, NASA CR-1572.

  6. H. U. Eckert:J. of Appl. Phys., 1971, vol. 42, pp. 3108–5123.

    Article  ADS  Google Scholar 

  7. E. S. Trekhov, A. T. Famenko, and Ya. M. Khoshav:Teplofiz. Vys. Temp., 1969, vol. 7, pp. 860–67.

    Google Scholar 

  8. J. Kleinmann and J. Cajko:Spectrochim. Acta, 1970, vol. 25B, pp. 657–71.

    ADS  Google Scholar 

  9. P. D. Johnston:Brit. J. Appl. Phys., 1968, vol. 1, p. 679.

    Google Scholar 

  10. S. V. Dresvin and V. S. Klubnikin:Teplofiz. Vys. Temp., 1971, vol. 9, pp. 475–91.

    CAS  Google Scholar 

  11. V. S. Klubnikin:Teplofiz. Vys. Temp., 1975, vol. 13, pp. 473–85.

    CAS  Google Scholar 

  12. B. Waldie:Chem. Eng., May 1972, vol. 261, pp. 188–97.

    Google Scholar 

  13. J. A. Lewis and W. H. Gauvin:AlchE J., 1973, vol. 19, pp. 982–90.

    CAS  Google Scholar 

  14. M. I. Boulos and W. H. Gauvin:Can. J. Chem. Eng., 1974, vol. 52, pp. 355–68.

    Article  Google Scholar 

  15. C. Bonot, M. Daquenet, and M. Dumarque:Int. J. Heat and Mass Transfer, 1974, vol. 17, pp. 643–51.

    Article  Google Scholar 

  16. Y. C. Lee, K. C. Hsu, and E. Pfender:ISPC-5, 1981, vol. 2, pp. 795–802.

    CAS  Google Scholar 

  17. M. I. Boulos:IEEE Trans. Plasma Science, 1978, PS-4, pp. 93–106.

    Article  ADS  Google Scholar 

  18. M. Vardelle, A. Vardelle, P. Fauchais, and M. I. Boulos:AlChE J., 1983, vol. 29, pp. 236–45.

    CAS  Google Scholar 

  19. T. Yoshida and K. Akashi:J. of Appl. Phys., 1977, vol. 48, pp. 2252–63.

    Article  ADS  CAS  Google Scholar 

  20. J. Lesinski, R. Gagne, and M. I. Boulos:Int. Sym. on Plasma Chemistry-5, 1981, vol. 2, pp. 527–36.

    CAS  Google Scholar 

  21. M. I. Boulos:IEEE Trans. Plasma Science, 1976, PS-4, pp. 28–41.

    Article  ADS  Google Scholar 

  22. W. E. Ranz and W. R. Marshall:Chem. Eng. Prog., 1952, vol. 48, pp. 141–46 and pp. 173–80.

    CAS  Google Scholar 

  23. Y. C. Lee, V. P. Chyou, and E. Pfender:Plasma Chem. and Plasma Process., 1985, vol. 5, no. 4, pp. 391–402.

    Article  Google Scholar 

  24. X. Chen and E. Pfender:Plasma Chem. and Plasma Process, 1982, vol. 2, pp. 293–304.

    Article  CAS  Google Scholar 

  25. S. V. Patankar:Numerical Heat Transfer and Fluid Flow, McGraw-Hill Book Company, New York, NY, 1980.

    MATH  Google Scholar 

  26. N. B. Vargaftik:Tables on the Thermophysical Properties of Liquids and Gases, 1975, Hemisphere Corp.

  27. H. W. Emmons:The Phys. of Fluids, June 1967, vol. 10, no. 6, pp. 1125–36.

    Article  ADS  CAS  Google Scholar 

  28. R.S. Devoto:The Phys. of Fluids, 1966, vol. 9, no. 4, pp. 1230–42.

    Article  ADS  CAS  Google Scholar 

  29. R.J. Miller and J.R. Ayen:J. of Appl. Phys., 1969, vol. 40, pp. 5260–71.

    Article  ADS  Google Scholar 

  30. D. L. Evans and R. S. Tankin:The Phys. of Fluids, June 1967, vol. 10, no. 6, pp. 1136–49.

    ADS  Google Scholar 

  31. V. Voller and M. Cross:Int. J. of Heat and Mass Transfer, 1979, vol. 22, pp. 749–56.

    Article  Google Scholar 

  32. W. Finkelnburg and M. Maecker:Encyclopedia of Physics, ed. by G. Flugge, Springer-Verlag Corp., 1956, vol. 1, ch. XXII, pp. 254–368.

  33. J. Mostaghimi, P. Proulx, and M. I. Boulos:ISPC-7, Eindhoven, The Netherlands, July 1985, vol. 1, pp. 865–72.

    Google Scholar 

  34. R. W. Smith: Ph.D. Thesis, 1985, Drexel Univ., Phila., PA.

  35. E. Bourdin, P. Fauchais, and M. I. Boulos:Int. J. Heat and Mass Transfer, 1983, vol. 26, pp. 567–74.

    Article  CAS  Google Scholar 

  36. D. Wei: Ph.D. Thesis, Drexel Univ., Phila., PA, 1986.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, D.Y.C., Farouk, B. & Apelian, D. Melting metal powder particles in an inductively coupled r.f. plasma torch. Metall Trans B 19, 213–226 (1988). https://doi.org/10.1007/BF02654205

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654205

Keywords

Navigation