Skip to main content
Log in

Influence of mold length and mold heat transfer on horizontal continuous casting of nonferrous alloy rods

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The influence of mold length and mold heat transfer on the conventional hot-top D.C. continuous casting process was studied through numerical simulations and experiments with horizontally cast 20 mm diameter lead and zinc rods. The minimum casting speed was found to be a nonlinear function of the mold length. For short molds, an inverse relationship between mold length and minimum casting speed was observed. However, the minimum casting speed for zinc cast from molds longer than 12 mm was constant at 2.5 mm/s. For lead cast in molds longer than 12 mm, the minimum observed casting speed was constant at 4.0 mm/s. The observed nonlinear relationship between minimum casting speed and mold length was predicted using a numerical model of the process. For this, an analytical expression for the mold boundary conditions was derived which included the influence of gas gap formation between the rod and the mold due to thermoelastic deformations of both the rod and the mold. Correlation between observed and predicted behavior was demonstrated for both the lead and zinc rods. Maximum casting speed was observed to increase with increased mold length; however, this speed was found to be critically dependent on process attributes such as mold and pinch wheel alignment and mold lubrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

specific heat (kJ/kg · K)

e :

mold thickness (m)g total gap between the rod and mold (m)

g gas :

thickness of gas filled gap between the rod and mold (m)

h :

convective heat transfer coefficient (W/m2 · K)

h cw :

effective heat transfer coefficient between the primary cooling water and the mold (W/m2 · K)

h eff :

total effective heat transfer coefficient between the rod and mold (W/m2 · K)

h of :

effective heat transfer coefficient between the gas gap and the oil covered mold surface (W/m2 · K)

h oil :

effective heat transfer coefficient between the rod and the oil covered mold surface (W/m2 · K)

h w :

effective heat transfer coefficient between the primary cooling water and the mold (W/m2 · K)

k :

thermal conductivity (W/m · K)

k gas :

thermal conductivity of the gas within the moldrod gap (W/m · K)

k l :

thermal conductivity of the liquid metal (W/m · K)

k m :

thermal conductivity of the mold (W/m · K)

k s :

thermal conductivity of the solid metal (W/m · K)

n r, ny :

direction cosines of the outward normal to the surface

Q :

heat flow per unit length of mold (W/m)

r :

radial coordinate (m)

R :

radius of the rod (m)

R m :

outside radius of the mold (m)

T :

temperature (K)

T ave :

average shell temperature of the rod (K)

T cl :

rod center line temperature (K)

T cw :

cooling water temperature (K)

T m :

mold outer diameter temperature (K)

T mp :

metal melting temperature (K)

T oil :

mold dressing surface temperature (K)

T r :

rod surface temperature (K)

T w :

mold bore temperature (K)

V c :

casting speed (m/s)

V min :

minimum casting speed (m/s)

Y oil :

total length of oil film on the mold surface (m)

y :

axial coordinate (m)

y max :

maximum axial dimension of the modeled rod (m)

α :

thermal expansion coefficient (K-1)

ρ :

density (kg/m3)

v :

Poisson’s ratio

Δ H f :

latent heat of fusion (kJ/kg)

Δ T(r) :

temperature change at radial positionr (K)

References

  1. W. T. Ennor: United States Patent 2,301,027, Nov. 3, 1942.

  2. E. F. Emley:Int. Metals Reviews, 1976, vol. 21, pp. 75–115.

    Google Scholar 

  3. G. Moritz: U.S. Patent 2,983,973, Nov. 1960.

  4. G. Moritz:Z. Metallkde., 1965, vol. 56, pp. 675–81.

    Google Scholar 

  5. G. Moritz:Z. Metallkde., 1969, vol. 60, pp. 742–49.

    CAS  Google Scholar 

  6. G. Von Siebel, D. Altenpohl, and H. M. Cohen:Z. Metallkde., 1953, vol. 44, pp. 173–83.

    CAS  Google Scholar 

  7. D. M. Lewis and J. Savage:Metall. Rev., 1956, vol. 1, pp. 65–118.

    CAS  Google Scholar 

  8. D. L. W. Collins:Metallurgia, 1967, vol. 76, pp. 137–44.

    CAS  Google Scholar 

  9. K. Buxmann:Metall., 1977, vol. 31, no. 2, pp. 163–70.

    CAS  Google Scholar 

  10. K. Buxmann:LIGHT METALS 1978, J. J. Miller, ed., TMS-AIME, Warrendale, PA, 1978, pp. 313–41.

    Google Scholar 

  11. R. F. T. Wilkins:J. Metals, 1983, vol. 35, no. 2, pp. 62–67.

    Google Scholar 

  12. Z. N. Getselev:J. Metals, 1971, vol. 23, no. 10, pp. 38–39.

    Google Scholar 

  13. R. Sautebin and W. Haller:LIGHT METALS 1985, H. O. Bohner, ed., TMS-AIME, Warrendale, PA, 1985, pp. 1301–08.

    Google Scholar 

  14. J. P. Faunce, F. E. Wagstaff, and H. Shaw:LIGHT METALS 1984, J. P. McGreer, ed., TMS-AIME, Warrendale, PA, 1984, pp. 1145–58.

    Google Scholar 

  15. J. M. Ekenes and F. E. Wagstaff:LIGHT METALS 1985, H.O. Bohner, ed., TMS-AIME, Warrendale, PA, 1985, pp. 1311–16.

    Google Scholar 

  16. R. Mitamura, T. Ito, Y. Takahashi, and T. Hiraoka:LIGHT METALS 1978, TMS-AIME, Warrendale, PA, 1978, pp. 281–91.

    Google Scholar 

  17. T. Sekiguchi, R. Mitamura, and S. Fukuda:LIGHT METALS 1981, G. M. Bell, ed., TMS-AIME, Warrendale, PA, 1981, pp. 871–83.

    Google Scholar 

  18. E. M. Dunn:LIGHT METALS 1979, W. S. Peterson, ed., TMS-AIME, Warrendale, PA, 1979, vol. 2, pp. 671–82.

    Google Scholar 

  19. D. G. Goodrich, J. L. Dassel, and R. M. Shogren:J. Metals, 1982, vol. 34, no. 5, pp. 45–49.

    Google Scholar 

  20. D. C. Weckman and P. Niessen:Z. Metallkde, 1983, vol. 74, no. 11, pp. 709–15.

    Google Scholar 

  21. Thermophysical Properties of Matter. Y. S. Touloukian, ed., Plenum Publ. Corp., New York, NY, 1970.

  22. Handbook of Tables for Applied Engineering Science, R. E. Bolz and G. L. Ture, eds., CRC Press, Cleveland, OH, 1973.

  23. Metals Handbook, 9th ed., H. Baker, ed., ASM, Metals Park, OH, 1979, vol. 2.

  24. D. C. Weckman and P. Niessen:Metall. Trans. B, 1982, vol. 13B, pp. 593–602.

    Article  ADS  CAS  Google Scholar 

  25. V. Venkateswaran: Ph.D. Thesis, University of British Columbia, 1980.

  26. V. Venkateswaran and K. Brimacombe:Proc. of Conf. on Modeling of Casting and Welding Processes II, AIME, Warrendale, PA, 1984, pp. 365–68.

    Google Scholar 

  27. J. Grandfield: COMALCO Research Centre, Thomastown, Victoria, Australia, personal communications, 1985.

  28. D. J. P. Adenis, D. H. Coats, and D. V. Ragone:J. Inst. Metals, 1962-1963, vol. 91, pp. 395–403.

    Google Scholar 

  29. D. A. Peel and A. E. Pengelly:Proc. Conf. Mathematical Models in Metallurgical Process Development, Iron and Steel Inst. Publ. 123, London, 1979, pp. 186–96.

    Google Scholar 

  30. S. P. Timoshenko and J. N. Goodier:Theory of Elasticity, McGraw-Hill Book Co., New York, NY, 1970.

    MATH  Google Scholar 

  31. D. C. Weckman and P. Niessen:Met. Tech., 1984, vol. 11, pp. 497–503.

    Google Scholar 

  32. Y. Nishida and H. Matsubara:Brit. Foundryman, 1976, vol. 69, no. 11, pp. 274–78.

    Google Scholar 

  33. S. D. E. Ramati, G. J. Abbaschian, D. G. Backman, and R. Mehrabian:Metall. Trans. B, 1978, vol. 9B, pp. 279–86.

    Article  ADS  CAS  Google Scholar 

  34. J. A. Sekhiar, G. J. Abbaschian, and R. Mehrabian:Materials Sci. Engineering, 1979, vol. 40, pp. 105–10.

    Article  Google Scholar 

  35. W. J. Bergmann:Aluminium, 1975, vol. 51, no. 5, pp. 336–39.

    Google Scholar 

  36. W. J. Bergmann:Proc. Continuous Casting Symposium of the 102nd AIME annual meeting, Chicago, IL, 1973, pp. 247–56.

  37. D. C. Weckman and P. Niessen:Metals Forum, 1984, vol. 7, no. 2, pp. 98–114.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Assistant, University of Waterloo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verwijs, J.P., Weckman, D.C. Influence of mold length and mold heat transfer on horizontal continuous casting of nonferrous alloy rods. Metall Trans B 19, 201–212 (1988). https://doi.org/10.1007/BF02654204

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654204

Keywords

Navigation