Skip to main content
Log in

Effect of system geometry on the leaching behavior of cobalt metal: Mass transfer controlling case

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The leaching behavior of cobalt particles in ammonia solutions has been studied. The leaching studies were carried out both in a stirred tank reactor and in a f luidized bed reactor and the results are compared with those obtained using a rotating disk geometry. Under the experimental conditions studied, the concentration difference of products between the solid /liquid interface and the bulk solution was found to be independent of the system geometry and flow dynamics. The leaching correlation obtained for cobalt particulate system was:(Sh) p = 2 + 0.65(Re) 1/2p (Sc)1/3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area of leaching substrate(L2),

Cb :

concentration of product in the bulk solution (mol L-3),

C s :

concentration of product at the surface (mol

d :

diameter of particles(L),

D′ :

diameter of fluidized bed (L),

D :

diffusion coefficient(L2 T− 1),

g :

gravitational acceleration (MT{&x2212; 2}),

j :

mass flux (ML{&x2212; 2} T{&x2212; 1}),

k :

apparent rate constant (T− 1)

k′:

mass transfer coefficient(LT− l),

M :

moles per liter (molL− 3),

Q :

volumetric flow rate (L3 T-1),

R :

radius of rotating disk(L),

V :

solution volume(L3),

V p :

slip velocity(LT− 1),

V t :

terminal velocity (LT−1),

V fs :

superficial velocity of fluid(LT− 1),

σ:

diffusion boundary layer thickness(L),

∈:

fractional volume of liquid in fluidized bed,

ρ s :

density of solid (ML −3),

ρf :

density of fluid (ML −3),

v :

kinematic viscosity of fluid (L2T{−1}),

ω:

angular velocity of rotating disk (radT− 1).

References

  1. V. G. Levich:Physicochemical Hydrodynamics, Prentice Hall, Englewood, Cliffs, N.J., 1962.

    Google Scholar 

  2. K. N. Han and F. Lawson:J. Less-Common Metals, 1974, vol. 38, pp. 19–29.

    Article  CAS  Google Scholar 

  3. C. Vu and K. N. Han:Trans. Inst. Min. Metall, 1977, vol. 86, pp. Cl19- C25.

    Google Scholar 

  4. K. N. Han, M. Hoover, and D. W. Fuerstenau:Int. J. Miner, Proc, 1974, vol. 1, pp. 215–30.

    Article  CAS  Google Scholar 

  5. P. Harriott:Am. Inst. Chem. Eng. J., 1962, vol. 8, pp. 93–102.

    CAS  Google Scholar 

  6. N. A. Sareyed-Dim and F. Lawson:Trans. Inst. Min. Metall., 1976, vol. 85, pp. C1-C6.

    Google Scholar 

  7. D. Kunii and O. Levenspiel:FluidizationEngineering, Wiley, N.Y., 1969.

    Google Scholar 

  8. D. M. Levins and J. R. Glastonbury:Trans. Inst. Chem. Eng., 1972, vol. 50, pp. 32–41, 132–46.

    CAS  Google Scholar 

  9. J. S. Newman:Electrochemical Systems, Prentice Hall, Englewood Cliffs, N.J., 1973.

    Google Scholar 

  10. J.H. Perry:Chemical Engineers Handbook, 4th ed., McGraw-Hill, 1963.

  11. A. C. Riddiford:Adv. Electrochem., 1966, vol. 4, pp. 47–116.

    CAS  Google Scholar 

  12. J. F. Richardson and W. N. Zaki:Trans. Inst. Chem. Eng., 1954, vol. 32, pp. 35–53.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vu, C., Han, K.N. Effect of system geometry on the leaching behavior of cobalt metal: Mass transfer controlling case. Metall Trans B 10, 57–62 (1979). https://doi.org/10.1007/BF02653972

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02653972

Keywords

Navigation