Skip to main content
Log in

Nondestructive characterization of Hg1−xCdxTe layers with n-p structures by magneto-thermoelectric measurements

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric properties of n-type Hg0.79Cd0.21Te (MCT) and of MCT layers with n-p structure have been investigated in transverse (B ⊥ ∇T) and longitudinal (B ‖∇T) magnetic fields (0 ≤ B ≤ 16 kG) using the lateral gradient method at temperatures between 10 and 300K. The experimental results were analyzed by considering the contributions of electrons and holes to the magneto-thermoelectric effect and the scattering mechanisms involved. The analysis is based on a nonparabolic conduction band and Landau quantization as well as empirical relations for the band gap, the intrinsic carrier density, and the magnetoresistance. For n-type MCT at low temperatures (10 < T < 30K) and weak magnetic fields (B < 2 kG), the transverse magneto-thermoelectric effect (TME) was seen to be dominated by electron scattering on ionized defects. Longitudinal acoustic phonon drag was found to affect the TME in strong magnetic fields (B > 3 kG) at low temperatures (T < 20K). Longitudinal (LO) phonons were shown to prevail in the electron scattering at higher temperatures (T > 50K) in weak magnetic fields. With increasing magnetic fields, the effect of LO-phonon scattering decreases, and eventually the TME becomes independent of electron scattering. The longitudinal magneto-thermoelectric effect of n-type MCT was also found to exhibit magnetophonon oscillations due to LO-phonon scattering from both HgTe and CdTe phonons. The transverse magnetoresistance (TMR) of the n-type layers in the quantum region has been found to be linearly dependent on the magnetic field. Owing to the TMR of the n-type layers, the variation of the TME of p-n multiple layers with magnetic field is much larger than the variation of the Seebeck coefficient with temperature. Thus, the sensitivity to p-type layers is considerably enhanced compared to that of the Seebeck coefficient. As a result, the TME has proved to be particularly useful in determining the doping and composition of the constituent layers of MCT n-p structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Baars, D. Brink and J. Ziegler,J. Vac. Sci. Technol. B 9, 1709 (1991).

    Article  CAS  Google Scholar 

  2. J. Baars, D. Brink, D.D. Edwall and L.O. Bubulac,J. Electron. Mater. 22, 923 (1993).

    CAS  Google Scholar 

  3. J. Baars, D. Brink,SPIE Proc. 2021, 222 (1993).

  4. A. Jedrzejczak and T. Dietl,Phys. Stat. Solidi. (B) 76, 737 (1976).

    Article  CAS  Google Scholar 

  5. V.V. Sologub, V.I. Ivanov-Omskii, V.M. Muzhdaba and S.S. Shalyt,Sou. Phys. Solid State 13, 1452 (1971).

    Google Scholar 

  6. J. J. Dubowski, T. Dietl, W. Szymanska and R.R. Galazka,J. Phys. Chem. Solids 42, 351 (1981).

    Article  CAS  Google Scholar 

  7. N.A. Gorodilov, L.I. Domanskaya and E.A. Neifel’d,Sov. Phys. Semicond. 21, 841 (1987).

    Google Scholar 

  8. N.A. Gorodilov, L.I. Domanskaya, E.A. Neifel’d and N.G. Shelushinina,Sov. Phys. Semicond. 24, 417 (1990).

    Google Scholar 

  9. S.A. Aliev, T.G. Gadzhiev and R.I. Selim-Zade,Sov. Phys. - Solid State 31, 346 (1989).

    Google Scholar 

  10. G.W. Lashkarev, M.V. Radchenko, E.S. Parenskaya, M.S. Nikizin and Ju.I. Rastegin,Pisma Zh. Eksp: Teor. Fiz. 53,411 (1991) (in Russian).

    CAS  Google Scholar 

  11. M. Seelmann-Eggebert and D. Brink, German Patent DE 40 12 453 A 1.

  12. D.D. Edwall, J.-S. Chen, J. Bajaj and E.R.Gertner,Semicond. Sci. Technol. 5, S22K(1990).

    Article  Google Scholar 

  13. D.D. Edwall, J.-S. Chen and L.O. Bubulac,J. Vac. Sci. Technol. B 9,1691(1991); D.D. Edwall, L.O. Bubulac and E.R.Gertner,J. Vac. Sci. Technol. B 10, 1423 (1992).

    Article  CAS  Google Scholar 

  14. L.O. Bubulac, D.D. Edwall, J. Chung and C.R. Viswanathan,J. Vac. Sci. Technol. B 10, 1633 (1992).

    Article  CAS  Google Scholar 

  15. E. Finkman and S.E.Schacham,J. Appl. Phys. 56, 2896 (1984).

    Article  CAS  Google Scholar 

  16. R.A. Smith,Semiconductors (Cambridge, U.K.: Cambridge University Press, 1964), p. 173.

    Google Scholar 

  17. S.S. Devlin,Physics and Chemistry of II-VI Compounds, ed. M. Aven and J. Prener (Amsterdam, The Netherlands: North-Holland, 1967), p. 562.

    Google Scholar 

  18. D.G. Seiler, J.R. Lowney, C.L. Littler and M.R. Loloee,J. Vac. Sci. Technol. A 8, 1237 (1990).

    Article  CAS  Google Scholar 

  19. J. Baars and F. Sorger,Solid State Commun. 10, 875 (1972).

    Article  CAS  Google Scholar 

  20. G.L. Hansen and J.L. Schmit,J. Appl. Phys. 54,1639 (1983).

    Article  CAS  Google Scholar 

  21. E.O. Kane,J. Phys. Chem. Solids 1,249(1957).

    Article  Google Scholar 

  22. S.M. Puri,Phys. Rev. 139, A995 (1965).

    Article  Google Scholar 

  23. V.L. Gurevich and Yu. A. Firsov,Physics JETP 13,137(1961).

    Google Scholar 

  24. L.M. Roth and P.N. Argyres,Magnetic Quantum Effects, Semiconductors and Semimetals 1, 199 (1966).

    Google Scholar 

  25. R. Dornhaus and G. Nimtz,Springer Tracts in Modern Physics, Vol. 98 (Berlin, Germany: Springer, 1983), p. 119.

    Google Scholar 

  26. M.H. Weiler,Semic. Semimet., Vol.16 (New York: Academic Press, 1981), p. 141.

    Google Scholar 

  27. L.E. Gurevich and G.M. Nedlin,Sov. Phys. Solid State 3,2029 (1962).

    Google Scholar 

  28. V.B. Khalfin,Sov. Phys. Semicond. 2, 257 (1968).

    Google Scholar 

  29. V.K. Arora and R.L. Peterson,Phys. Rev. B 9, 4323 (1974).

    Article  CAS  Google Scholar 

  30. J.R. Barker,J. Phys. C: Solid State Phys. 6, L52 (1973).

    Article  CAS  Google Scholar 

  31. H. Kahlert and G. Bauer,Phys. Rev. Lett. 30, 1211 (1973).

    Article  CAS  Google Scholar 

  32. E.A. Mozhaev, V.I. Ivanov-Omskii, V.A. Mal’tseva, D.V. Mashovets, and R.V. Parfen’ev,Sov. Phys. Semicond. 11, 1260 (1977).

    Google Scholar 

  33. S.W. McClure, D.G. Seiler, C.L. Littler and M.W. Goodwin,J. Vac. Sci. Technol. A 3, 271 (1985).

    Article  CAS  Google Scholar 

  34. K. Takita, A. Susuki and K. Masuda,Solid State Commun. 58, 209 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baars, J., Brink, D., Littler, C.L. et al. Nondestructive characterization of Hg1−xCdxTe layers with n-p structures by magneto-thermoelectric measurements. J. Electron. Mater. 24, 1311–1319 (1995). https://doi.org/10.1007/BF02653090

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02653090

Key words

Navigation