Skip to main content
Log in

The kinetics of nickel oxide reduction by hydrogen; measurements in a fluidized bed and in a gravimetric apparatus

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The suitability of a batch fluidized bed laboratory reactor for measuring the rates of gas-solid reactions was investigated. Experiments were carried out on the reduction of Falconbridge nickel oxide by hydrogen in a batch fluidized bed reactor within the tem-perature range 550 K to 650 K using particles in the range of 60 to 100 mesh. The reactor was operated at approximately atmospheric pressure and gas flow rates were in the range of two to four times the minimum fluidization velocity at temperature. The results showed internal consistency and rough agreement with the results of previous workers. The re-sults were interpreted and correlated by means of a structural model for gas-solid reac-tions. As a check on the fluidized bed measurements, experiments were also carried out using the conventional gravimetric technique to measure the rate of reduction of compac-ted pellets of nickel oxide by hydrogen. When due allowance was made for the change of surface area of the oxide during compaction, the results were in close agreement with the fluidized bed results. Rate measurements using hydrogen-nitrogen mixtures revealed that the reaction is not first order with respect to hydrogen, as usually assumed, but is ap-proximately of order two-thirds at one atmosphere hydrogen partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Szekely and J.W. Evans:Met. Trans., 1971, vol. 2, pp. 1691–98.

    Article  CAS  Google Scholar 

  2. J. Szekely and J. W. Evans:Met. Trans., 1971, vol. 2, pp. 1699–710.

    Article  CAS  Google Scholar 

  3. J. Szekely and J. W. Evans:Chem. Eng. Sci., 1971, vol. 26, pp. 1901–13.

    Article  CAS  Google Scholar 

  4. H. Y. Sohn and J. Szekely:Chem. Eng. Sci., 1972, vol. 27, pp. 763–78.

    Article  CAS  Google Scholar 

  5. R. H. Tien and E. T. Turkdogan:Met. Trans., 1972, vol. 23, pp. 2039–48.

    Article  Google Scholar 

  6. D. Papanastassiou and G. Bitsianes:Met. Trans., 1973, vol. 4, pp. 477–86.

    Article  CAS  Google Scholar 

  7. M. Ishida and C. Y. Wen:Chem. Eng. Sci., 1971, vol. 26, pp. 1031–41.

    Article  CAS  Google Scholar 

  8. R. L. Pigford and G. Sliger:Ind, Eng. Chem. Process Des. Develop., 1973, vol. 12, pp. 85–91.

    Article  CAS  Google Scholar 

  9. A. Calvello and J. M. Smith:Proc. CHEMECA, Sydney (Inst. Chem. Eng. Symp. Ser. No. 33), 1970, pp. 1-24.

  10. J. W. Evans:Can. J. Chem. Eng, 1972, vol. 50, pp. 811–14.

    Article  Google Scholar 

  11. J. Szekely, C. I. Lin, and H. Y. Sohn:Chem. Eng. Sci., 1973, vol. 28, pp. 1975–85.

    Article  CAS  Google Scholar 

  12. M. Ishida, C. Y. Wen, and T. Shirai:Chem. Eng. Sci., 1971, vol. 26, pp. 1043–48.

    Article  CAS  Google Scholar 

  13. K. Natesan and W. O. Philbrook:Met. Trans., 1970, vol. 1, pp. 1353–60.

    Article  CAS  Google Scholar 

  14. S. Yagi, D. Kunii, T. Nagano, and H. Mineta:J. Chem. Soc. Ind. Chem. Eng. Sect, 1953, vol. 56, pp. 213.

    Google Scholar 

  15. J. Feinman:Ind. Eng. Chem. Process Des. Develop., 1964, vol. 3, pp. 241–47.

    Article  CAS  Google Scholar 

  16. H. P. Meissner and F. C. Schora:TMS-AIME, 1961, vol. 221, pp. 1221–25.

    CAS  Google Scholar 

  17. A. Okura and W-K. Lu:Can. Met. Quart., 1969, vol. 8, pp. 325–29.

    Article  CAS  Google Scholar 

  18. M. M. Avedesian and J. F. Davidson:Trans. Inst. Chem. Eng., 1973, vol. 51, pp. 121–31.

    CAS  Google Scholar 

  19. J. R. Grace:A.I.Ch.E. Symp. Ser., 1971, vol. 67, no. 116, pp. 159–67.

    CAS  Google Scholar 

  20. K. Yoshida and C. Y. Wen:Chem. Eng. Sci., 1970, vol. 25, pp. 1395–1404.

    Article  CAS  Google Scholar 

  21. J. W. Evans and S. Song:Met. Trans., 1973, vol. 4, pp. 1701–07.

    Article  Google Scholar 

  22. J. W. Evans and S. Song:Ind. Eng. Chem. Process Des. Develop., 1974, vol. 13, pp. 146–52.

    Article  CAS  Google Scholar 

  23. F. A. Zenz and D. F. Othmer:Fluidization and Fluid-Particle Systems, Reinhold Pub. Corp., New York, 1960.

    Google Scholar 

  24. K. Kunii and O. Levenspiel:Fluidization Engineering, Wiley, New York, 1969.

    Google Scholar 

  25. Fluidization, J. F. Davidson and D. Harrison, eds., Academic Press, New York, 1971.

    Google Scholar 

  26. J. W. Evans: Ph.D. Dissertation, S.U.N.Y. Buffalo, 1970.

    Google Scholar 

  27. T. Kurosawa, R. Hasegawa, and T. Yagihashi:J. Jap. Met. Soc., 1970, vol. 34, pp. 481–85.

    CAS  Google Scholar 

  28. F. Chiesa and M. Rigaud:Can. J. Chem. Eng., 1971, vol. 49, pp. 617–20.

    Article  CAS  Google Scholar 

  29. H. Forestier and G. Nury:Proc. Int. Symp. Reactiv. Solids, 1952, pp. 189-93.

  30. A. Roman and B. Delmon:Compt. Rend., 1969, T. 269, ser. B, pp. 801-04.

  31. A. Roman and B. Delmon:Compt. Rend., 1970, T, 271, ser. B, pp. 77-79.

  32. J. O. Hirschfelder, C. F. Curtis, and R. B. Bird:Molecular Theory of Gases and Liquids, Wiley, New York, 1954.

    Google Scholar 

  33. C. N. Satterfield:Mass Transfer in Heterogeneous Catalysis, M.I.T. Press, Cambridge, Mass., 1970.

    Google Scholar 

  34. A. Kivnick and A. N. Hixson:Chem. Eng. Prog., 1952, vol. 48, pp. 394–400.

    CAS  Google Scholar 

  35. V. N. Babushkin, A. I. Tikhonov, and V. I. Smirnov:Tsvet. Metal. (Eng. Trans.), 1971, vol. 12, no. 7, pp. 13–15.

    Google Scholar 

  36. G. Parravano:J. Amer. Chem. Soc., 1952, vol. 74, pp. 1194–98.

    Article  CAS  Google Scholar 

  37. H. Charcosset, R. Frety, Y. Trambouze, and M. Prettre:Reactiv. Solids, Proc. Int. Symp., 6th, 1958 (Pub. 1969), pp. 171–79, J. W. Mitchell, ed., Wiley- Interscience, New York

    Google Scholar 

  38. D. Fretty: Ph.D. Thesis, University de Lyon, 1969.

  39. C. E. Leon-Sucre: M.S. Thesis, University of California, Berkeley, 1973.

    Google Scholar 

  40. A. F. Benton and P. H. Emmett:J. Amer. Chem. Soc., 1924, vol. 46, pp. 2728–37.

    Article  CAS  Google Scholar 

  41. M. T. Simnad, R. Smoluchowski, and A. Spilners:J. Appl. Phys., 1958, vol. 29, pp. 1630–32.

    Article  CAS  Google Scholar 

  42. Y. Iida and K. Shimada:Bull Chem. Soc. Jap., 1960, vol. 33, pp. 790–93.

    Article  CAS  Google Scholar 

  43. Y. Iida and K. Shimada:Bull. Chem. Soc. Jap., 1960, vol. 33, pp. 8–8.

    Article  CAS  Google Scholar 

  44. Y. Iida and K. Shimada:Bull. Chem. Soc. Jap., 1960, vol. 33, pp. 1194–96.

    Article  CAS  Google Scholar 

  45. Y. Iida, K. Shimada, and S. Ozaki:Bull. Chem. Soc. Jap., 1960, vol. 33, pp. 1372–75.

    Article  CAS  Google Scholar 

  46. J. Bandrowski, C. R. Bidding, K. H. Yang, and O. A. Hougen:Chem. Eng. Sci., 1962, vol. 17, pp. 379–90.

    Article  CAS  Google Scholar 

  47. T. Yamashina and T. Nagamatsuya:J. Phys. Chem., 1966, vol. 70, pp. 3572–75.

    Article  CAS  Google Scholar 

  48. M. Pospisil, J. Cabicar, and V. Rejholec:Collect. Czech. Chem. Commun., 1970, vol. 35, pp. 1319–33.

    Article  CAS  Google Scholar 

  49. M. Pospisil and J. Cabicar:Collect. Czech. Chem. Commun., 1967, vol. 32, pp. 3832–41.

    Article  CAS  Google Scholar 

  50. R. J. Bratton and G. W. Brindley:Trans. Faraday Soc., 1966, vol. 62, pp. 2909–15.

    Article  CAS  Google Scholar 

  51. S. E. Khalafalla, G. W. Reimers, and M. J. Baird:Met. Trans., 1974, vol. 5, pp. 1013–18.

    Article  CAS  Google Scholar 

  52. D. E. Y. Walker:J. Appl. Chem., 1965, vol. 15, pp. 128–35.

    Article  CAS  Google Scholar 

  53. H. H. Voge and L. T. Atkins:J. Catal., 1962, vol. 1, pp. 171–79.

    Article  CAS  Google Scholar 

  54. S. Song: Ph.D. Dissertation, Univ. of California, Berkeley, June 1975.

    Google Scholar 

  55. W. E. Ranz and W. R. Marshall, Jr.:Chem. Eng. Prog., 1952, vol. 48, pp. 141–46.

    CAS  Google Scholar 

  56. H. Mine, M. Tokuda, and M. Ohtani:J. Jap. Inst. Metals, 1970, vol. 34, pp. 814–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student at Berkeley

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, J.W., Song, S. & Leon-Sucre, C.E. The kinetics of nickel oxide reduction by hydrogen; measurements in a fluidized bed and in a gravimetric apparatus. Metall Trans B 7, 55–65 (1976). https://doi.org/10.1007/BF02652820

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652820

Keywords

Navigation