Skip to main content
Log in

Thin lipid membranes with aqueous interfaces: Apparatus designs and methods of study

  • Technical
  • Symposium: Lipid Monolayer and Bilayer Models and Cellular Membranes. Part II Conducted by The American Oil Chemists' Society at its 58th Annual Spring Meeting, New Orleans, Louisiana May 7–10, 1967 R. M. Burton, Program Chairman
  • Published:
Journal of the American Oil Chemists Society

Abstract

Thin membranes can be formed in aqueous media from amphiphilic lipids, and will spontaneously approach a limiting thickness of bimolecular dimensions (bilayers). This paper describes apparatus and methods for studying such thin lipid membranes, and illustrates their use in determining some of the basic properties of the membranes, especially bilayers.

Several methods of forming thin lipid membranes are described. The early stages in apparatus development are traced, and the theoretical variables and operational parameters relating to apparatus and system design are discussed.

Designs for two basic types of apparatus are presented in detail: one is a cylindrical chamber especially constructed to permit optical investigation of the membrane; the second is a multiple chamber system designed for the study of several different membranes either simultaneously or in rapid succession. Interchangeable chamber units are held in a thermostat block, and assemblies of electrodes and provisions for perfusion or sampling of aqueous medium are placed in the chambers as required. Methods are described which enable simultaneous mechanical, electrical, optical, and chemical operations and studies to be performed on the same membrane with either type of apparatus.

Membranes were formed from several purified amphiphilic lipids and from mixed-lipid extracts from a variety of biological membranes. The types and mechanisms of drainage of thin lipid membranes with aqueous interfaces are analogous to those previously described for aqueous soap films in air. The limiting bilayer thickness is confirmed by electrical measurements. The resistivity of the bilayers is ca. 1012 to 1014 ohm-cm, their capacity is ca. 0.4 μfd-cm−2 and their dielectric breakdown voltage is ca. 3×105 V-cm−1. Other physical properties of the bilayers are described. Permeability of the bilayers to various substances was determined by diffusion flux, osmotic flux, and electrochemical potential methods using the apparatus described. Substances studied included water, small monovalent ions, glucose, acetylcholine, salicylamide and synaptic vesicles.

The chemical, physical, electrical, and permeability properties of the experimentally formed lipid bilayer membranes are similar to those of biological membranes. These similarities strongly support the Danielli-Davson hypothesis, which proposes that a lipid bilayer is the basic structure of biological membranes. The apparatus, methods, and information presented in this paper provide tools for further investigation of lipid bilayer membrane properties and for further testing of hypotheses relating to membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danielli, J. F. and H. Davson, J. Cell. Comp. Physiol.5, 495–508 (1935).

    Article  CAS  Google Scholar 

  2. Danielli, J. F., J. Cell. Comp. Physiol7, 393–408 (1936).

    Article  CAS  Google Scholar 

  3. Davson, H. and J. F. Danielli, “The Permeability of Natural Membranes,” 2nd ed., Cambridge University Press, Cambridge, England, 1952.

    Google Scholar 

  4. Gorter, E. and F. Grendel, J. Exptl. Med.4, 439–443 (1925).

    Article  Google Scholar 

  5. Danielli, J. F. and E. N. Harvey, J. Cell. Comp. Physiol.5, 483–494 (1935).

    Article  CAS  Google Scholar 

  6. Harvey, E. N. and H. Shapiro, J. Cell. Comp. Physiol.5, 255–267 (1934).

    Article  CAS  Google Scholar 

  7. Overton, E., V. Naturforsch. Ges. Zuerich.40, 159 (1895).

    Google Scholar 

  8. Kavanau, J. L., “Structure and Function in Biological Membranes,” 2 Vol., Holden-Day, Inc., San Francisco, 1965.

    Google Scholar 

  9. Lakshminarayanaiah, N., Chem. Rev.65, 492–565 (1965).

    Article  Google Scholar 

  10. Cuthbert, A. W., Pharmacol. Rev.19, 59–106 (1967).

    CAS  Google Scholar 

  11. Dean, R. B., Nature144, 32 (1939).

    CAS  Google Scholar 

  12. Saunders, L., J. Pharm. Pharmacol.15, 155–156 (1963).

    CAS  Google Scholar 

  13. Tobias, J. M., D. P. Agin and R. Pawlowski, J. Gen. Physiol.45, 989–1001 (1962).

    Article  CAS  Google Scholar 

  14. Gaines, G. L., Jr., “Insoluble Monolayers at Liquid-Gas Interfaces,” Interscience Publishers, New York, 1966.

    Google Scholar 

  15. Mysels, K. J., K. Shinoda and S. Frankel, “Soap Films, Studies of Their Thinning and a Bibliography,” Pergamon Press, New York, 1959.

    Google Scholar 

  16. Mueller, P., D. O. Rudin, H. Ti Tien and W. C. Wescott, Nature194, 979–980 (1962).

    Article  CAS  Google Scholar 

  17. Langmuir, I. and D. F. Waugh, J. Gen. Physiol.21, 745–755 (1938).

    Article  CAS  Google Scholar 

  18. Dean, R. B., H. J. Curtis and K. S. Cole, Science91, 50–51 (1940).

    Article  CAS  Google Scholar 

  19. Singleton, W. S., M. S. Gray, M. L. Brown and J. L. White, JAOCS42, 53–56 (1965).

    Article  CAS  Google Scholar 

  20. Wagner, H., L. Hörhammer and P. Wolff, Biochem. Z.334, 175–184 (1961).

    CAS  Google Scholar 

  21. Folch, J., M. Lees and G. H. Sloane-Stanley, J. Biol. Chem.226, 497–509 (1957).

    CAS  Google Scholar 

  22. Folch-Pi, J., in “Brain Lipids and Lipoproteins and the Leucodystrophies,” J. Folch-Pi, ed., Elsevier Publishing Company, Amsterdam, 1963, pp. 18–30.

    Google Scholar 

  23. Laatsch, R. H., M. W. Kies, S. Gordon and E. C. Alvord, Jr., J. Exptl. Med.115, 777–788 (1962).

    Article  CAS  Google Scholar 

  24. Dodge, J. T., C. Mitchell and D. J. Hanahan, Arch. Biochem. Biophys.100, 119–130 (1963).

    Article  CAS  Google Scholar 

  25. DeRobertis, E., G. Rodriquez de Lores Arnaiz, L. Salganicoff, A. Pellegrino de Iraldi and L. M. Zieher, J. Neurochem.10, 225–235 (1963).

    Article  CAS  Google Scholar 

  26. Cleland, W. W., Biochemistry3, 480–482 (1964).

    Article  CAS  Google Scholar 

  27. Stahl, E., “Thin-Layer Chromatography. A Laboratory Handbook,” Academic Press, Inc., New York, 1965.

    Google Scholar 

  28. Marinetti, G. V., J. Lipid Res.3, 1–20 (1962).

    CAS  Google Scholar 

  29. Burton, R. M., L. Garcia-Bunuel, M. Golden and Y. M. Balfour, Biochemistry2, 580–585 (1963).

    Article  CAS  Google Scholar 

  30. Krell, K. and S. A. Hashim, J. Lipid Res.4, 407–412 (1963).

    CAS  Google Scholar 

  31. Dobiášová, M., J. Lipid Res.4, 481–482 (1963).

    Google Scholar 

  32. Marinetti, G. V., J. Lipid Res.6, 315–317 (1965).

    CAS  Google Scholar 

  33. Hooghwinkel, G. J. M. and H. P. G. A. van Niekerk, Koninkl. Ned. Akad. van Wetenschap. Proc., B,63, 258–276 (1960).

    Google Scholar 

  34. Bray, G. E., Anal. Biochem.1, 279–285 (1960).

    Article  CAS  Google Scholar 

  35. Saltzman, A., J. Biol. Chem.174, 399–404 (1948).

    CAS  Google Scholar 

  36. Udenfriend, S., “Fluorescence Assay in Biology and Medicine,” Academic Press, New York, 1962, p 19, 421–424, 471.

    Google Scholar 

  37. Udenfriend, S., D. E. Duggan, B. M. Vasta and B. B. Brodie, J. Pharmacol. Exptl. Therap.120, 26–32 (1957).

    CAS  Google Scholar 

  38. Chirigos, M. A. and S. Udenfriend, J. Lab. Clin. Med.54, 769–772 (1959).

    CAS  Google Scholar 

  39. Mueller, P., D. O. Rudin, H. Ti Tien and W. C. Wescott, J. Phys. Chem.67, 534–535 (1963).

    CAS  Google Scholar 

  40. Läuger, P., W. Lesslauer, E. Marti and J. Richter, Biochim. Biophys. Acta135, 20–32 (1967).

    Article  Google Scholar 

  41. Mueller, P., D. O. Rudin, H. Ti Tien, W. C. Wescott, in “Recent Progress in Surface Science,” Vol. I, J. F. Danelli, K. G. A. Pankhurst, and A. C. Riddiford, eds., Academic Press, New York, 1964, p 379–393.

    Google Scholar 

  42. Pagano, R. and T. E. Thompson, Abstracts of the Biophysical Society Eleventh Annual Meeting, Houston, Texas, Feb. 22–24, 1967, 62.

  43. Tsofina, L. M., E. A. Liberman and A. V. Babakov, Nature212, 681–683 (1966).

    Article  CAS  Google Scholar 

  44. Overbeek, J. T. G., J. Phys. Chem.64, 1178–1183 (1960).

    Article  CAS  Google Scholar 

  45. Howard, R. E. and R. M. Burton, Federation Proc.26, 403 (1967).

    Google Scholar 

  46. Berg, H. J. van den, J. Mol. Biol.12, 290–291 (1965).

    Google Scholar 

  47. Kingslake, R., in “Applied Optics and Optical Engineering,” Vol. I, R. Kingslake, ed., Academic Press, New York, 1965, p 201–244.

    Google Scholar 

  48. Tien, H. T., J. Theoret. Biol.16, 97–110 (1967).

    Article  CAS  Google Scholar 

  49. Chamot, E. M. and C. W. Mason, “Handbook of Chemical Microscopy,” 3rd ed., Vol. I, John Wiley & Sons, Inc., New York, 1958.

    Google Scholar 

  50. Nastuk, W. L., ed., “Physical Techniques in Biological Research. VI. Electrophysiological Methods, Part B,” Academic Press, New York, 1963.

    Google Scholar 

  51. Nastuk, W. L., ed., “Physical Techniques in Biological Research. V. Electrophysiological Methods, Part A,” Academic Press, New York, 1964.

    Google Scholar 

  52. Howard, R. E., manuscript in preparation.

  53. Huang, C., L. Wheeldon and T. E. Thompson, J. Mol. Biol.8, 148–160 (1964).

    CAS  Google Scholar 

  54. Howard, R. E., manuscript in preparation.

  55. Huang, C. and T. E. Thompson, J. Mol. Biol.13, 183–193 (1965).

    CAS  Google Scholar 

  56. Hodgman, C. D., ed., “Handbook of Chemistry and Physics,” 37th ed., Chemical Rubber Publishing Co., Cleveland, Ohio, 1955.

    Google Scholar 

  57. Vandenheuvel, F. A., JAOCS40, 455–471 (1963).

    Article  Google Scholar 

  58. Vandenheuvel, F. A., JAOCS42, 481–492 (1965).

    Article  CAS  Google Scholar 

  59. Hanai, T., D. A. Haydon and J. Taylor, Proc. Royal Soc. (London), Ser. A.281, 377–391 (1964).

    CAS  Google Scholar 

  60. Hanai, T., D. A. Haydon and J. Taylor, J. Gen. Physiol.48, (5, Pt. 2) 59–63 (1965).

    Article  CAS  Google Scholar 

  61. Hanai, T., D. A. Haydon and J. Taylor, J. Theoret. Biol.9, 278–296 (1965).

    Article  CAS  Google Scholar 

  62. Hanai, T., D. A. Haydon and J. Taylor, Ibid.9, 422–432 (1965).

    Article  CAS  Google Scholar 

  63. Hanai, T., D. A. Haydon and J. Taylor, Ibid.9, 433–443 (1965).

    Article  CAS  Google Scholar 

  64. Schwan, H. P., C. Huang and T. E. Thompson, Abstracts of the Biophysical Society Ninth Annual Meeting, Boston, Mass., Feb. 23–25, 1966, 151.

  65. Thompson, T. E. and C. H. Huang, J. Mol. Biol.16, 576 (1966).

    Google Scholar 

  66. Ti Tien, H., J. Mol. Biol.16, 577–580 (1966).

    Google Scholar 

  67. Tien, H. T. and E. A. Dawidowicz, J. Colloid Interface Sci.22, 438–453 (1966).

    Article  CAS  Google Scholar 

  68. Thompson, T. E., in “Cellular Membranes in Development,” M. Locke, ed., Academic Press, New York, 1964, p 83–96.

    Google Scholar 

  69. Henn, F. A., G. L. Decker, J. W. Greenawalt and T. E. Thompson, Abstracts of the Biophysical Society Eleventh Annual Meeting, Houston, Texas, Feb. 22–24, 1967, 63.

  70. Henn, F. A., G. L. Decker, J. W. Greenwalt and T. E. Thompson, J. Mol. Biol.24, 51–58 (1967).

    Article  CAS  Google Scholar 

  71. Robertson, J. D., Biochem. Soc. Symp., Cambridge, England,16, 1–43 (1959).

    Google Scholar 

  72. Mueller, P., D. O. Rudin, H. Ti Tien and W. C. Wescott, Circulation26, 1167–1170 (1962).

    CAS  Google Scholar 

  73. Mueller, P. and D. O. Rudin, J. Theoret. Biol.4, 268–280 (1963).

    Article  CAS  Google Scholar 

  74. Mueller, P. and D. O. Rudin, Nature213, 603–604 (1967).

    Article  CAS  Google Scholar 

  75. Bean, R. C. and W. C. Shepherd, American Chemical Society Abstracts of Papers, 150th Meeting, 1965, 19C.

  76. Bean, R. C., W. C. Shepherd, C. D'Agostino and L. Smith, Federation Proc.25, 656 (1966).

    Google Scholar 

  77. Seufert, W. D., Nature207, 174–176 (1965).

    Article  CAS  Google Scholar 

  78. Bielawski, J., T. E. Thompson and A. L. Lehninger, Biochem. Biophys. Res. Commun.24, 948–954 (1966).

    Article  CAS  Google Scholar 

  79. Del Castello, J., A. Rodriquez, C. A. Romero and V. Sanchez, Science153, 185–188 (1966).

    Article  Google Scholar 

  80. Tobias, J. M., Nature203, 13–17 (1964).

    Article  CAS  Google Scholar 

  81. Harris, E. J., “Transport and Accumulation in Biological Systems,” Academic Press, Inc., New York, 1960.

    Google Scholar 

  82. Paganelli, C. V. and A. K. Solomon, J. Gen. Physiol.41, 259–277 (1957).

    Article  CAS  Google Scholar 

  83. Wirth, F. P., H. E. Morgan and C. R. Park, Federation Proc.24, 588 (1965).

    Google Scholar 

  84. Wood, R. E. and H. E. Morgan, Abstracts of the Biophysical Society Eleventh Annual Meeting, Houston, Texas, Feb. 22–24, 1967, 63.

  85. Huang, C. and T. E. Thompson, J. Mol. Biol.15, 539–554 (1966).

    CAS  Google Scholar 

  86. Maddy, A. H., C. Huang and T. E. Thompson, Federation Proc.25, 933–936 (1966).

    CAS  Google Scholar 

  87. Thompson, T. E., and C. Huang, Ann. N. Y. Acad. Sci.137, 740–744 (1966).

    Article  CAS  Google Scholar 

  88. Hanai, T., and D. A. Haydon, J. Theoret. Biol.11, 370–382 (1966).

    Article  CAS  Google Scholar 

  89. Hanai, T., D. A. Haydon and W. R. Redwood, Ann. N. Y. Acad. Sci.137, 731–739 (1966).

    Article  CAS  Google Scholar 

  90. Cass, A. and A. Finkelstein, J. Gen. Physiol.50, 1765–1784 (1967).

    Article  CAS  Google Scholar 

  91. Andreoli, T., Science154, 417 (1966).

    Article  Google Scholar 

  92. Andreoli, T. E., J. A. Bangham and D. C. Tosteson, J. Gen. Physiol.50, 1729–1749 (1967).

    Article  CAS  Google Scholar 

  93. Eisenman, G., J. P. Sandblom and J. L. Walker, Jr., Science155, 965–974 (1967).

    Article  CAS  Google Scholar 

  94. Burton, R. M., R. E. Howard, S. Baer and Y. M. Balfour, Biochim. Biophys. Acta84, 441–447 (1964).

    CAS  Google Scholar 

  95. Burton, R. M. and R. E. Howard, Ann. N. Y. Acad. Sci.144, 411–432 (1967).

    Article  CAS  Google Scholar 

  96. Howard, R. E. and R. M. Burton, Biochem. Pharmacol.13, 1677–1678 (1964).

    Article  CAS  Google Scholar 

  97. Howard, R. E. and R. M. Burton, Biochim. Biophys. Acta84, 435–440 (1964).

    CAS  Google Scholar 

  98. Petkau, A., W. S. Chelack, W. L. Parker and W. Stackiw, Abstracts of the Biophysical Society Ninth Annual Meeting, Boston, Mass., Feb. 23–25, 1966, 148.

  99. Haydon, D. A. and J. Taylor, J. Theoret. Biol.4, 281–296, 1963.

    Article  CAS  Google Scholar 

  100. Ti Tien, H. T., S. Carbone and E. A. Dawidowicz, Nature212, 718–719 (1966).

    Article  Google Scholar 

  101. Tien, H. T., Abstracts of the Biophysical Society Eleventh Annual Meeting, Houston, Texas, Feb. 22–24, 1967, 62.

  102. Leslie, R. B. and D. Chapman, Chem. Phys. Lipids1, 143–156 (1967).

    Article  CAS  Google Scholar 

  103. Adam, N. K., “The Physics and Chemistry of Surfaces,”, Oxford University Press, Oxford, England, 1930.

    Google Scholar 

  104. Danielli, J. F., J. Theoret. Biol.12, 439–441 (1966).

    Article  CAS  Google Scholar 

  105. Green, D. E. and J. F. Perdue, Proc. Nat. Acad. Sci.55, 1295–1302 (1966).

    Article  CAS  Google Scholar 

  106. Green, D. E. and A. Tzagoloff, J. Lipid Res.7, 587–602 (1966).

    CAS  Google Scholar 

  107. Green, D. E., D. W. Allman, E. Bachmann, H. Baum, K. Kopaczyk, E. F. Korman, S. Lipton, D. H. MacLennan, D. G. McConnell, J. F. Perdue, J. S. Rieske and A. Tzagoloff, Arch. Biochem. Biophys.119, 312–335 (1967).

    Article  CAS  Google Scholar 

  108. Blasie, J. K., M. M. Dewey, A. E. Blaurock and C. R. Worthington, J. Mol. Biol.14, 143–152 (1965).

    Article  CAS  Google Scholar 

  109. Gent, W. L. G. and N. A. Gregson, Nature204, 553–555 (1964).

    Article  CAS  Google Scholar 

  110. Razin, S., H. J. Morowitz and T. M. Terry, Proc. Nat. Acad. Sci.54, 219–225 (1965).

    Article  CAS  Google Scholar 

  111. Korn, E. D., Science153, 1491–1498 (1966).

    Article  CAS  Google Scholar 

  112. Lucy, J. A., J. Theoret. Biol.7, 360–373 (1964).

    Article  CAS  Google Scholar 

  113. Andreoli, T., P. Cook and D. C. Tosteson, Abstracts of the Biophysical Society Eleventh Annual Meeting, Houston, Texas, Feb. 22–24, 1967, 9.

  114. Mueller, P. and D. O. Rudin, Biochem. Biophys. Res. Commun.26, 398–404 (1967).

    Article  CAS  Google Scholar 

  115. Zutphen, H. van, and L. L. M. van Deenen, Biochem. Biophys. Res. Commun.22, 393–398 (1966).

    Article  Google Scholar 

  116. Feinstein, M. B., J. Gen. Physiol.48, 357–374 (1964).

    Article  CAS  Google Scholar 

  117. Watkins, J. C., J. Theoret. Biol.9, 37–50 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Portions of this material are from a dissertation presented in partial fulfillment of requirements for the PhD degree, Graduate School of Arts and Sciences, Washington University.

About this article

Cite this article

Howard, R.E., Burton, R.M. Thin lipid membranes with aqueous interfaces: Apparatus designs and methods of study. J Am Oil Chem Soc 45, 202–229 (1968). https://doi.org/10.1007/BF02652417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652417

Keywords

Navigation