Metallurgical and Materials Transactions A

, Volume 27, Issue 9, pp 2593–2604 | Cite as

High-temperature deformation processing of Ti-24Al-20Nb

  • P. K. Sagar
  • D. Banerjee
  • K. Muraleedharan
  • Y. V. R. K. Prasad
Mechanical Behavior

Abstract

Power dissipation maps have been generated in the temperature range of 900 ‡C to 1150 ‡C and strain rate range of 10-3 to 10 s-1 for a cast aluminide alloy Ti-24Al-20Nb using dynamic material model. The results define two distinct regimes of temperature and strain rate in which efficiency of power dissipation is maximum. The first region, centered around 975 ‡C/0.1 s-1, is shown to correspond to dynamic recrystallization of the α2 phase and the second, centered around 1150 ‡C/0.001 s-1, corresponds to dynamic recovery and superplastic deformation of the β phase. Thermal activation analysis using the power law creep equation yielded apparent activation energies of 854 and 627 kJ/mol for the first and second regimes, respectively. Reanalyzing the data by alternate methods yielded activation energies in the range of 170 to 220 kJ/mol and 220 to 270 kJ/mol for the first and second regimes, respectively. Cross slip was shown to constitute the activation barrier in both cases. Two distinct regimes of processing instability—one at high strain rates and the other at the low strain rates in the lower temperature regions—have been identified, within which shear bands are formed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Muraleedharan: Ph.D. Thesis, Banaras Hindu University, Varanasi, India, 1995.Google Scholar
  2. 2.
    K. Muraleedharan, A.K. Gogia, T.K. Nandy, D. Banerjee, and S. Lele:Metall. Trans. A, 1992, vol. 23A, pp. 401–15.Google Scholar
  3. 3.
    S. Krishnan, T.K. Nandy, and D. Banerjee: Defence Metallurgical Research Laboratory, Hyderabad, India, [unpublished research,] 1994.Google Scholar
  4. 4.
    S.L. Semiatin, K.A. Lark, D.R. Barker, V. Seetharaman, and B. Marquardt:Metall. Trans. A, 1992, vol. 23A, pp. 295–305.Google Scholar
  5. 5.
    M. Long and H.J. Rack:Mater. Sci. Eng., 1993, vol. A170, pp. 215–26.Google Scholar
  6. 6.
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Baker:Metall. Trans. A, 1984, vol. 15A, pp. 1883–92.Google Scholar
  7. 7.
    P.K. Sagar, D. Banerjee, and Y.V.R.K. Prasad:Mater. Sci. Eng. A, 1994, vol. 117, pp. 185–97.Google Scholar
  8. 8.
    T.K. Nandy, R.S. Mishra, and D. Banerjee:Scripta Metall. Mater., 1993, vol. 28, pp. 569–74.CrossRefGoogle Scholar
  9. 9.
    D. Banerjee, R.G. Rowe, and E.L. Hall:High Temperature Ordered Intermetallic Alloys—IV, Materials Research Society Symposia Proceedings, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., 1991, vol. 213, pp. 285–90.Google Scholar
  10. 10.
    H.L. Gegel, J.C. Malas, S.M. Doraivelu, and V.A. Shende: Materials Research Society, Pittsburgh, PA,Metals Handbook, 1987, vol. 14, pp. 417–38.Google Scholar
  11. 11.
    Y.V.R.K. Prasad:Ind. J. Technol., 1990, vol. 28, pp. 435–51.Google Scholar
  12. 12.
    A.K. Kalyan Kumar: Master's Thesis, Indian Institute of Science, Bangalore, India, 1987.Google Scholar
  13. 13.
    C. Huang, T.A. Dean, and M.H. Loretto:Mater. Sci. Eng., 1995, vol. A191, pp. 39–47.Google Scholar
  14. 14.
    G. Schock: inDislocation in Solids, North Holland Publishing Company, Amsterdam, F. Nabarro, ed., 1980, vol. 3, pp. 63–163.Google Scholar
  15. 15.
    U.F. Kocks, A.S. Argon, and M.F. Ashby:Progress of Material Science, Pergamon Press, New York, NY, 1975, pp. 110–70.Google Scholar
  16. 16.
    W. Cho, A.W. Thomson, and J.C. Williams:Metall. Trans., 1990, vol. 21A, pp. 641–51.Google Scholar
  17. 17.
    M.G. Mendiratta and H.A. Lipsitt:J. Mater. Sci., 1980, vol. 15, pp. 2985–90.CrossRefGoogle Scholar
  18. 18.
    R.S. Mishra and D. Banerjee:Mater. Sci. Eng., 1990, vol. 130, pp. 151–64.CrossRefGoogle Scholar
  19. 19.
    P. Griffiths and C. Hammond:Titanium Science and Technology, Proc. Symp., R.I. Jaffee, and H.M. Burte, eds., TMS-AIME, Warrendale, PA, 1972, pp. 1155–67.Google Scholar
  20. 20.
    P.K. Sagar, D. Banerjee, and Y.V.R.K. Prasad: Defence Metallurgical Research Laboratory, Hyderabad, India, 1995, [unpublished work.]Google Scholar
  21. 21.
    S.A. Court, J.P.A. Lofvander, M.H. Loretto, and H.L. Fraser:Phil. Mag. A, 1990, vol. 61, pp. 109–39.Google Scholar
  22. 22.
    D. Banerjee:Phil. Mag. A, 1995, vol. 72(6), pp. 1559–87.Google Scholar
  23. 23.
    S.L. Semiatin and G.D. Lahoti:Metall. Trans. A, 1981, vol. 12A, pp. 1705–18.Google Scholar
  24. 24.
    S.L. Semiatin and G.D. Lahoti:Metall. Trans. A, 1981, vol. 12A, pp. 1719–28.Google Scholar
  25. 25.
    S.L. Semiatin and G.D. Lahoti:Metall. Trans. A, 1982, vol. 13A, pp. 275–88.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1996

Authors and Affiliations

  • P. K. Sagar
    • 1
  • D. Banerjee
    • 1
  • K. Muraleedharan
    • 2
  • Y. V. R. K. Prasad
    • 3
  1. 1.Defence Metallurgical Research LaboratoryHyderabadIndia
  2. 2.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburgh
  3. 3.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations