Metallurgical and Materials Transactions A

, Volume 25, Issue 10, pp 2275–2284 | Cite as

Microstructural control in hot working of IN-718 superalloy using processing map

  • N. Srinivasan
  • Y. V. R. K. Prasad
Mechanical Behavior


The hot-working characteristics of IN-718 are studied in the temperature range 900 °C to 1200 °C and strain rate range 0.001 to 100 s−1 using hot compression tests. Processing maps for hot working are developed on the basis of the strain-rate sensitivity variations with temperature and strain rate and interpreted using a dynamic materials model. The map exhibits two domains of dynamic recrystallization (DRX): one occurring at 950 °C and 0.001 s−1 with an efficiency of power dissipation of 37 pct and the other at 1200 °C and 0.1 s−1 with an efficiency of 40 pct. Dynamic recrystallization in the former domain is nucleated by the δ(Ni3Nb) precipitates and results in fine-grained microstructure. In the high-temperature DRX domain, carbides dissolve in the matrix and make interstitial carbon atoms available for increasing the rate of dislocation generation for DRX nucleation. It is recommended that IN-718 may be hot-forged initially at 1200 °C and 0.1 s−1 and finish-forged at 950 °C and 0.001 s−1 so that fine-grained structure may be achieved. The available forging practice validates these results from processing maps. At temperatures lower than 1000 °C and strain rates higher than 1 s−1 the material exhibits adiabatic shear bands. Also, at temperatures higher than 1150°C and strain rates more than 1s−1, IN-718 exhibits intercrystalline cracking. Both these regimes may be avoided in hotworking IN-718.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Metallurgy and Applications of Superalloy 718, Edward A. Loria, ed., TMS-AIME, Warrendale, PA, 1989.Google Scholar
  2. 2.
    A.E. Marsh:Metallurgia, 1982, vol. 49, pp. 10–20.Google Scholar
  3. 3.
    R.E. Bailey: Report No. SP-69-9, Allegheny Ludlum Steel Research Center, Brackenridge, PA, 1969.Google Scholar
  4. 4.
    P.K. Chaudhury, J.J. Valencia, and D. Zhao:Materials Week ’92, ASM and TMS, Chicago, IL, p. 65 (Abstract).Google Scholar
  5. 5.
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker:Metall. Trans. A, 1984, vol. 15A, pp. 1883–92.Google Scholar
  6. 6.
    H.L. Gegel, J.C. Malas, S.M. Doraivelu, and V.A. Shende:Metals Handbook, ASM, Metals Park, OH, 1987, vol. 14, pp. 417–38.Google Scholar
  7. 7.
    J.M. AlexanderModelling of Hot Deformation of Steels, Springer-Verlag, Berlin, 1989, pp. 101–14.Google Scholar
  8. 8.
    H. Ziegler:Progress in Solid Mechanics, John Wiley and Sons, New York, NY, 1963, vol. 4, pp. 93–193.Google Scholar
  9. 9.
    A.K.S. Kalyan Kumar: Master’s Thesis, Indian Institute of Science, Bangalore, 1987.Google Scholar
  10. 10.
    Y.V.R.K. Prasad:Ind. J. Technol., 1990, vol. 28, pp. 435–51.Google Scholar
  11. 11.
    C.T. Sims and W.C. Hagel:The Superalloy, Wiley-Interscience Publishing, New York, NY, 1972.Google Scholar
  12. 12.
    R. Raj:Metall. Trans. A, 1981, vol. 12A, pp. 1089–97.Google Scholar
  13. 13.
    N. Srinivasan and Y.V.R.K. Prasad:Mater. Sci. Technol., 1992, vol. 8, pp. 206–12.Google Scholar
  14. 14.
    N. Srinivasan and Y.V.R.K. Prasad:J. Mater. Process. Technol., 1994, vol. 41, pp. 409–24.CrossRefGoogle Scholar
  15. 15.
    M.J. Luton and CM. Seilars:Acta Metall., 1969, vol. 17, pp. 1033–43.CrossRefGoogle Scholar
  16. 16.
    H.J. McQueen and J.J. Jonas:Treatise Mater. Sci. Technol., 1975, vol. 6, pp. 393–493.Google Scholar
  17. 17.
    T.E. Howson and W.J. Couts, Jr.:Metallurgy and Applications-Superalloy 718, TMS-AIME, Warrandale, PA, 1989, pp. 685–94.Google Scholar
  18. 18.
    P.E. Mosser, G. Leconte, J. Leray, A. Lasalmonie, and Y. Honnarat:Metallurgy and Applications-Superalloy 718, TMS-AIME, Warrandale, PA, 1989, pp. 79–93.Google Scholar
  19. 19.
    N. Srinivasan and Y.V.R.K. Prasad:Mater. Sci. Technol., in press.Google Scholar
  20. 20.
    M. Ueki, S. Horie, and T. Nakamura:Mater. Sci. Technol., 1987, vol. 3, pp. 329–37.Google Scholar
  21. 21.
    M.N. Shetty and A.K. Laha:Z. Metallkd., 1986, vol. 6, pp. 397–402.Google Scholar
  22. 22.
    N. Srinivasan and Y.V.R.K. Prasad: Indian Institute of Science, Bangalore, unpublished research, 1993.Google Scholar
  23. 23.
    B.E.P. Beeston and L.K. France:J. Inst. Met., 1968, vol. 96, pp. 105–07.Google Scholar
  24. 24.
    K. Monma; H. Suto, and H. Oikama:J. Jpn. Inst. Met., 1964, vol. 28, pp. 188–96.Google Scholar
  25. 25.
    D.D. Pruthi, M.S. Anand, and R.P. Agarwala:J. Nucl. Mater., 1977, vol. 64, pp. 206–10.CrossRefGoogle Scholar
  26. 26.
    W.J. McG. Tegart:Ductility, ASM, Metals Park, OH, 1968, pp. 133–77.Google Scholar
  27. 27.
    W.A. Wilkinson:Metallurgy and Applications—Superalloy 718, TMS-AIME, Warrandale, PA, 1989, pp. 119–34.Google Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1994

Authors and Affiliations

  • N. Srinivasan
    • 1
  • Y. V. R. K. Prasad
    • 1
  1. 1.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations