Skip to main content
Log in

Low-Cycle fatigue properties of a SiC Whisker-reinforced 2124 aluminum alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Low-cycle fatigue microcracking leading to failure of smooth specimens of a powder metallurgy (PM) 2124 aluminum alloy reinforced with 20 vol pct SiC whiskers was studied. The crack size near the onset of unstable growth was inferred to be 50 to 70 µm in the stress amplitude range of the present study (400 to 600 MPa,R = −1) from observations of the fracture surfaces of the specimens. This corresponds to stress intensities between 1/3 to 1/2 typical values ofK 1c or 1/4 to 1/9 the critical length predicted fromK 1c values of 12 to 14 MPa√m. The microcrack size distributions and growth data were obtained from the low-cycle fatigue specimens at various stages of fatigue, using a surface replica technique. During continued cycling, microcracks formed and were lost through linkage with other cracks. At the same time, the fraction of small cracks (<5 µm) decreased, while that of larger cracks (>5 µm) increased. The total number of cracks increased with increasing numbers of cycles. Typical microcrack growth rates were determined to bedb/dn = (3.57 to 6.11) × 10−10 (Δ/K)2.2to2.48 in the lateral direction of the crack, andda/dn = (5.83 to 13.0) × 10−11K)1.54 to 1.60 in the depth direction of the crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.V. Nair, J.K. Tien, and R.C. Bates:Int. Mater. Rev., 1985, vol. 30, pp. 275–90.

    CAS  Google Scholar 

  2. T.G. Nieh:Metall. Trans. A, 1984, vol. 15A, pp. 139–46.

    CAS  Google Scholar 

  3. A. Dichecha, S.G. Fishman, and S.D. Karmarker:J. Met., 1981, vol. 33, pp. 12–17.

    Google Scholar 

  4. J.L. Cook and W.R. Mohn: inEngineering Materials Handbook, ASM INTERNATIONAL, Metals Park, OH, vol. 1, 1987, pp. 896–902.

    Google Scholar 

  5. S.J. Harris:Mater. Sci. Technol., 1988, vol. 4, pp. 231–39.

    CAS  Google Scholar 

  6. N.J. Hurd:Mater. Sci. Technol., 1988, vol. 4, pp. 513–17.

    CAS  Google Scholar 

  7. D.R. Williams and M.E. Fine: in5th Int. Conf. on Composite Materials ICCM-V, W.C. Harrigan, Jr., J. Strife, and A.K. Dhingra, eds., TMS-AIME, Warrendale, PA, 1985, pp. 639–70.

    Google Scholar 

  8. D.R. Williams: Ph.D. Thesis, Northwestern University, Evanston, IL, 1985.

    Google Scholar 

  9. S.B. Wu and R.J. Arsenault: inFundamental Relationships between Microstructure and Mechanical Properties of Metal-Matrix Composites, P.K. Liaw and M.N. Gungor, eds., TMS-AIME, Warrendale, PA, 1990, pp. 241–53.

    Google Scholar 

  10. J.K. Shang, W. Yu and R.O. Ritchie:Mater. Sci. Eng., 1988, vol. 102A, pp. 181–92.

    Google Scholar 

  11. T. Christman and S. Suresh:Mater. Sci. Eng., 1988, vol. 102A, pp. 211–16.

    Google Scholar 

  12. R.W. Hertsberg:Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley & Sons, New York, NY, 1989.

    Google Scholar 

  13. M. Sasaki: Master’s Thesis, Northwestern University, Evanston, IL, 1992.

    Google Scholar 

  14. Y. Murakami:Stress Intensity Factors Handbook, Pergamon Press, Elmsford, NY, 1987, vol. 2, pp. 422–26.

    Google Scholar 

  15. M. Klensnil and P. Lukas:Fatigue of Metallic Materials, Elsevier Scientific Publishing, New York, NY, 1980.

    Google Scholar 

  16. C. Ruiz and J. Epstein:Int. J. Fract., 1985, vol. 28, pp. 231–38.

    Google Scholar 

  17. C. Masuda and Y. Tanaka: inProc. ICF-7, Pergamon Press, Elmsford, NY, 1989, vol. 4, pp. 3089–96.

    Google Scholar 

  18. J.J. Bonnen, J.E. Allison, and J.W. Jones:Metall. Trans. A, 1991, vol. 22A, pp. 1007–19.

    CAS  Google Scholar 

  19. C. Masuda and Y. Tanaka:Iron Steel Inst. Jpn., 1989, vol. 75, pp. 1753–60.

    CAS  Google Scholar 

  20. L.J. Fu, M. Schmerling, and H.L. Marcus: inComposite Materials: Fatigue and Fracture, ASTM STP 907, 1986, pp. 51–72.

  21. S.R. Nutt: inInterfaces in Metal-Matrix Composites, A.K. Dhingra and S.G. Fishman, eds., TMS, Warrendale, PA, 1896, pp. 157–67.

    Google Scholar 

  22. S.R. Nutt and J.M. Duva:Scripta Metall., 1986, vol. 20, pp. 1055–58.

    Article  CAS  Google Scholar 

  23. J.J. Lewandowski and C. Liu:Mater. Sci. Eng., 1989, vol. A107, pp. 241–55.

    CAS  Google Scholar 

  24. L. Povirk, A. Needleman, and S.R. Nutt:Mater. Sci. Eng., 1990, vol. A125, pp. 129–40.

    CAS  Google Scholar 

  25. E.E. Underwood and K. Banerji: inMetals Handbook, 9th ed., 1987, ASM INTERNATIONAL, Metals Park, OH, vol. 12, pp. 193–339.

    Google Scholar 

  26. D.L. Davidson, K.S. Chan, A. McMinn, and G.R. Leverant:Metall. Trans. A, 1989, vol. 20A, pp. 2369–78.

    CAS  Google Scholar 

  27. W.A. Logsdon and P.K. Liaw:Eng. Fract. Mech., 1986, vol. 24, pp. 737–51.

    Article  Google Scholar 

  28. D.L. Davidson:Eng. Fract. Mech., 1989, vol. 33, pp. 965–77.

    Article  Google Scholar 

  29. S. Suresh and R.O. Ritchie:Int. Met. Rev., 1984, vol. 29, pp. 445–76.

    Google Scholar 

  30. L. Lawson, E.Y. Chen, M. Sasaki, and M. Meshii: inMechanisms and Mechanics of Composites Fracture, R. Bhagat, R. Arsenault, and S. Fishman, eds., ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 65–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, M., Lawson, L. & Meshii, M. Low-Cycle fatigue properties of a SiC Whisker-reinforced 2124 aluminum alloy. Metall Mater Trans A 25, 2265–2274 (1994). https://doi.org/10.1007/BF02652326

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652326

Keywords

Navigation