Skip to main content
Log in

Low-Cycle fatigue of dispersion-strengthened copper

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The cyclic deformation behavior of a dispersion-strengthened copper alloy, GlidCop Al-15, has been studied at plastic strain amplitudes in the range 0.1 pct ≤Δε p/2 ≤ 0.8 pct. Compared to pure polycrystalline copper, the dispersion-strengthened material exhibits a relatively stable cyclic response as a consequence of the dislocation substructures inherited from prior processing and stabilized by the A12O3 particles. These dislocation structures remain largely unaltered during the course of deformation; hence, they do not reveal any of the features classically associated with copper tested in fatigue. At low amplitudes, the fatigue lifetimes of the dispersion-strengthened copper and the base alloy are similar; however, the former is more susceptible to cracking at stress concentrations because of its substantially greater strength. This similarity in fatigue lifetimes is a consequence of the dispersal of both deformation and damage accumulation by the fine grain size and dislocation/particle interactions in the GlidCop alloy. The operation of these mechanisms is reflected in the fine surface slip markings and rough fracture surface features for this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. C.A. English and D.J. Mazey:Nucl. Energy, 1990, vol. 29, pp. 67–80.

    CAS  Google Scholar 

  2. J.A. Koski, R.D. Boyd, S.M. Kempka, A.D. Romig, M.F. Smith, R.D. Watson, and J.B. Whitley:J. Nucl. Mater., 1984, vol. 121, pp. 309–15.

    Article  CAS  Google Scholar 

  3. S.N. Rosenwasser, R.D. Stevenson, G. Listvinski, D.L. Vrable, J.E. McGregor, and N. Nir:J. Nucl. Mater., 1984, vols. 122-123, pp. 1107–20.

    Article  Google Scholar 

  4. J.L. Yuen: Paper presented at the 119th Annual Meeting of TMS-AIME, Anaheim, CA, Feb. 18–22, 1990.

  5. M.A. Morris and D.G. Morris:Mater. Sci. Eng., 1989, vol. Ill, pp. 115–27.

    Google Scholar 

  6. A.V. Nadkarni: inHigh Conductivity Copper and Aluminum Alloys, E. Lingand P.W. Taubenblat, eds., TMS-AIME, Warrendale, PA, 1984, pp. 77–101.

    Google Scholar 

  7. M.S. Nagorka, C.G. Levi, G.E. Lucas, and S.D. Ridder:Mater. Sci. Eng., 1991, vol. A104, pp. 277–89.

    Google Scholar 

  8. J.R. Groza and J.C. Gibeling:Mater. Sci. Eng., 1993, vol. A171, pp. 115–25.

    CAS  Google Scholar 

  9. J.W. Martin and G.C. Smith:J. Inst. Met., 1954–1955, vol. 83, pp. 153–65.

    Google Scholar 

  10. W.M. Stobbs, D.F. Watt, and L.M. Brown:Phil. Mag. A, 1971, vol. 23, pp. 1169–84.

    CAS  Google Scholar 

  11. G.R. Leverent and CP. Sullivan:Trans. TMS-AIME, 1968, vol. 242, pp. 2347–53.

    Google Scholar 

  12. G.R. Leverant and C.P. Sullivan:Trans. TMS-AIME, 1969, vol. 245, pp. 2035–39.

    CAS  Google Scholar 

  13. S.P. Bhat and C. Laird:Int. J. Fatigue Eng. Mater. Struct., 1979, vol. 1, pp. 79–92.

    Article  CAS  Google Scholar 

  14. D.M. Elzey and E. Arzt:Metall. Trans. A, 1991, vol. 22A, pp. 837–51.

    CAS  Google Scholar 

  15. J.D. Whittenberger: inNew Materials by Mechanical Alloying Techniques, E. Arzt and L. Schultz, eds., DGM Informationsgesellschaft, Oberursel, Germany, 1989, pp. 201–15.

    Google Scholar 

  16. T.J. Miller, S.J. Zinkle, and B.A. Chin:J. Nucl. Mater., 1991, vols. 179-181, pp. 263–66.

    Article  CAS  Google Scholar 

  17. J.J. Stephens, F.J. Bourcier, F.J. Vigil, and D.T. Schmale: Sandia Report SAND88-351, UC-25, Sandia National Laboratory, Albuquerque, NM, 1988.

    Google Scholar 

  18. J. Groza and S. Farrens:Microstruct. Sci., 1992, vol. 19, pp. 689–99.

    CAS  Google Scholar 

  19. J.M. Meininger and J.C. Gibeling:Metall. Trans. A, 1992, vol. 23A, pp. 3077–84.

    CAS  Google Scholar 

  20. H. Mughrabi, K. Herz, and X. Stark:Int. J. Fract., 1981, vol. 17, pp. 193–220.

    Article  CAS  Google Scholar 

  21. J. Polák and M. Kiesnil:Mater. Sci. Eng., 1984, vol. 63, pp. 189–96.

    Article  Google Scholar 

  22. J.C. Figueroa, S.P. Bhat, R. De La Veaux, S. Murzenski, and C. Laird:Acta Metall., 1981, vol. 29, pp. 1667–78.

    Article  CAS  Google Scholar 

  23. J. Polák, K. Obrtlik, and J. Helešic:Mater. Sci. Eng., 1991, vol. A132, pp. 67–76.

    Google Scholar 

  24. R. Wang and H. Mughrabi:Mater. Sci. Eng., 1984, vol. 63, pp. 147–63.

    Article  CAS  Google Scholar 

  25. C. Calabrese and C. Laird:Mater. Sci. Eng., 1974, vol. 13, pp. 141–57.

    Article  CAS  Google Scholar 

  26. C.E. Feltner and C. Laird:Acta Metall., 1967, vol. 15, pp. 1621–32.

    Article  CAS  Google Scholar 

  27. C. Laird, Z. Wang, B.-T. Ma, and H.-F. Chai:Mater. Sci. Eng., 1989, vol. A 1113, pp. 245–57.

    Google Scholar 

  28. F. Ernst, P. Pirouz, and A.H. Heuer:Phil. Mag. A, 1991, vol. 63, pp. 259–77.

    CAS  Google Scholar 

  29. L. Lianes and C. Laird:Mater. Sci. Eng., 1993, vol. A161, pp. 1–12.

    Google Scholar 

  30. A.T. Winter, O.B. Pederson, and K.V. Rasmussen:Acta Metall., 1981, vol. 29, pp. 735–48.

    Article  CAS  Google Scholar 

  31. H. Mughrabi and R. Wang: inBasic Mechanisms in Fatigue of Metals, P. Lukáš and J. Polák, eds., Elsevier, Amsterdam, 1988, pp. 1–13.

    Google Scholar 

  32. H. Mughrabi: inDislocations and Properties of Real Materials, M. Loretto, ed., Institute of Metals, London, 1985, pp. 244–62.

    Google Scholar 

  33. J.D. Embury: inStrengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Wiley, New York, NY, 1971, pp. 331–402.

    Google Scholar 

  34. A. Hynnä, V.-T. Kuokkala, T. Lepistö, T. Mäntylä, and P. Kettunen: inHigh Temperature Alloys for Gas Turbines and Other Applications, W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T.B. Gibbons, I. Kvernes, Y. Lindblom, J.B. Marriott, and D.B. Meadowcroft, eds., D. Reidel Publishing Company, Dordrecht, The Netherlands, 1986, pp. 1091–1102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Research Assistant, University of California, Davis, CA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robles, J., Anderson, K.R., Groza, J.R. et al. Low-Cycle fatigue of dispersion-strengthened copper. Metall Mater Trans A 25, 2235–2245 (1994). https://doi.org/10.1007/BF02652324

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652324

Keywords

Navigation