Skip to main content
Log in

Room-Temperature strength and deformation of Tib2-reinforced near-γ titanium aluminides

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A series of TiB2-reinforced near-γ titanium aluminide (Ti-Al) matrix composites have been produced in investment-cast form and characterized with respect to microstructure and tensile deformation. The Ti-Al matrices of the composites examined are based upon the binary composition Ti-47 Al (at. pct), with varying proportions (2 to 6 cumulative percent) of manganese, vanadium, chromium, and niobium. TiB2 has been introduced into the microstructuresvia XD* processing at levels of 7 and 12 vol pct and compared to unreinforced (0 vol pct TiB2), base variants. The influences of heat-treatment temperature and time have also been studied for each composition and reinforcement variant. The addition of dispersed TiB2 leads to a fine, stable, and homogeneous as-cast matrix microstructure. The measured TiB2 size within the composites examined ranged from 1.4 to 2.6 µm. Increasing the volume fraction of TiB2 leads to increased elastic moduli, increased ambient temperature tensile strengths, and in general, increased strain-hardening response. In some instances, the overall ductility of the alloy increases with the addition of TiB2 reinforcement. The flow stresses of both the monolithic and composite variants exhibit conventional power-law plasticity. The results indicate that the strengthening and the flow behavior in these composites are derived from both indirect and direct sources. Strengthening contributions are indirectly derived from the microstructural changes within the matrix of the composite that evolve due to the presence of the reinforcement during its evolution and development, for example, due to grain refinement and reinforcement-derived interstitial solid-solution strengthening. Direct contributions to strength are those that can be specifically attributed to the presence of the reinforcement during deformation,e.g., through the interaction of dislocations with the reinforcing particles. When the estimates of the indirect contributions are isolated and arithmetically removed from the magnitude of the total observed strength of the composite, the increase in flow stress correlates in all instances with the inverse square root of the planar interparticle spacing for all alloy compositions, heat treatments, and levels of strain examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-W. Kim and D.M. Dimiduk:JOM, 1991, vol. 43 (8), pp. 40–47.

    CAS  Google Scholar 

  2. J.C. Beddoes, W. Wallace, and M.C. deMalherbe:Mater. Manuf. Proc, 1992, vol. 7 (4), pp. 527–59.

    CAS  Google Scholar 

  3. F.H. Froes, C. Suryanarayana, and D. Eliezer:Iron Steel Inst. Jpn. Int., 1991, vol. 31 (10), pp. 1235–48.

    CAS  Google Scholar 

  4. D.M. Dimiduk, D.B. Miracle, Y.-W. Kim, and M.S. Mendiratta:Iron Steel Inst. Jpn. Int., 1991, vol. 31 (10), pp. 1223–34.

    CAS  Google Scholar 

  5. J.C. Chestnutt and J.C. Williams:Met. Mater., 1990, vol. 6, pp. 509–11.

    Google Scholar 

  6. E.A. Feest and J.H. Iweed:Mater. Sci. Technol., 1992, vol. 8 (4), pp. 308–16.

    CAS  Google Scholar 

  7. Y.G. Nakagawa, S. Yokoshima, and K. Mastuda:Mater. Sci. Eng. A, 1992, vol. A153 (1-2), pp. 722–25.

    CAS  Google Scholar 

  8. B. London and T.J. Kelly:Proc. Conf. on Microstructurel Property Relationships in Titanium Aluminides and Alloys, TMS, Warrendale, PA, 1991, pp. 285–95.

    Google Scholar 

  9. Y.-W. Kim:Proc. Conf. on Microstructure/Property Relationships in Titanium Aluminides and Alloys, TMS, Warrendale, PA, 1991, pp. 91–103.

    Google Scholar 

  10. S.-C. Huang and D.S. Shin:Proc. Conf. on Microstructure/ Property Relationships in Titanium Aluminides and Alloys, TMS, Warrendale, PA, 1991, pp. 105–22.

    Google Scholar 

  11. K.S. Chan and Y.-W. Kim:Proc. Conf. on Microstructurel Property Relationships in Titanium Aluminides and Alloys, TMS, Warrendale, PA, 1991, pp. 179–96.

    Google Scholar 

  12. K.S. Chan:Metall. Trans. A, 1993, vol. 24A, pp. 569–83.

    CAS  Google Scholar 

  13. K. Hashimoto, M. Nobuki, T. Tsujimoto, and T. Suzuki:Iron Steel Inst. Jpn. Int., 1991, vol. 31, pp. 1154–60.

    CAS  Google Scholar 

  14. S.-C. Huang, E.L. Hall, and D.S. Shih:Iron Steel Inst. Jpn. Int., 1991, vol. 31 (10), pp. 1100–05.

    CAS  Google Scholar 

  15. Y.-W. Kim:High Temperature Ordered Intermetallic Alloys IV, Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA, 1991, vol. 213, pp. 777–94.

    Google Scholar 

  16. T. Hanmura, R. Uemori, and M. Tanino:J. Mater. Res., 1988, vol. 3 (4), pp. 656–64.

    Google Scholar 

  17. W. Wunderlich, T. Kremser, and G. Frommeyer:Z. Metallkd., 1990, vol. 81, pp. 802–08.

    CAS  Google Scholar 

  18. S.L. Kampe, J.A. Clarke, and L. Christodoulou:Intermetallic Matrix Composites, Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA, 1990, vol. 194, pp. 225–32.

    Google Scholar 

  19. F.H. Froes:Light Met. Age, 1991, June, 6–11.

  20. N.S. Stoloff and D.E. Alman:Intermetallic Matrix Composites, Material Research Society Symposia Proceedings, Material Research Society, Pittsburgh, PA, 1990, vol. 194, pp. 31–43.

    Google Scholar 

  21. P.K. Brindley, S.L. Draper, J.I. Eldridge, M.V. Nathal, and S.M. Arnold:Metall. Trans. A, 1992, vol. 23A, pp. 2527–40.

    CAS  Google Scholar 

  22. S.L. Draper, P.K. Brindley, and M.V. Nathal:Metall. Trans. A, 1992, vol. 23A, pp. 2541–48.

    CAS  Google Scholar 

  23. A.M. Ritter, E.L. Hall, and N. Lewis:Intermetallic Matrix Composites, Material Research Society Symposia Proceedings, Material Research Society, Pittsburgh, PA, 1990, vol. 194, pp. 413–21.

    Google Scholar 

  24. C.H. Weber, J.Y. Yang, J.P.A. Lofvander, C.G. Levi, and A.G. Evans:Acta Metall. Mater., 1993, vol. 41 (9), pp. 2681–90.

    Article  CAS  Google Scholar 

  25. K.S. Sharvan:Iron Steel Inst. Jpn. Int., 1991, vol. 31 (10), pp. 1249–59.

    Google Scholar 

  26. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia:J. Mater. Sci., 1991, vol. 26, pp. 1137–56.

    Article  CAS  Google Scholar 

  27. K.S. Sharvan and J.D. Whittenberger:Mater. Sci. Technol., 1992, vol. 8 (4), pp. 317–30.

    Google Scholar 

  28. H.J. Rack: inMetal Matrix Composites: Processing and Interfaces, R.K. Everett and R.J. Arsenault, eds., Academic Press, New York, NY, 1991, pp. 85–101.

    Google Scholar 

  29. R.B. Bhagat: inMetal Matrix Composites: Processing and Interfaces, R.K. Everett, and R.J. Arsenault, eds., Academic Press, New York, NY, 1991, pp. 43–82.

    Google Scholar 

  30. D. Lewis III: inMetal Matrix Composites: Processing and Interfaces, R.K. Everett and R.J. Arsenault, eds., Academic Press, New York, NY, 1991, pp. 121–50.

    Google Scholar 

  31. M.J. Koczak and M.K. Premkumar:JOM, 1993, vol. 45, pp. 44–48.

    CAS  Google Scholar 

  32. R.A. Patterson, P.L. Martin, B.K. Damkroger, and L. Christodoulou:Weld. J., 1990, June, pp. 395-405.

  33. V.C. Nardone and K.M. Prewo:Scripta Metall., 1986, vol. 20, pp. 43–48.

    Article  CAS  Google Scholar 

  34. M.R. Piggott:Load Bearing Fibre Composites, Pergamon, Oxford, 1980, p. 62.

    Google Scholar 

  35. P.M. Kelley:Int. Met. Rev., 1973, vol. 18, pp. 31–36.

    Google Scholar 

  36. R.J. Arsenault, L. Wang, and C.R. Feng:Acta Metall. Mater., 1991, vol. 39, pp. 47–57.

    Article  CAS  Google Scholar 

  37. Y. Wu and E.J. Lavernia:Scripta Metall. Mater., 1992, vol. 27 (2), pp. 173–78.

    Article  CAS  Google Scholar 

  38. H. Lilholt:Proc. Conf. on Deformation of Multi-Phase Particle Containing Materials, RISØ National Laboratory, Roskilde, Denmark, 1983, pp. 381–92.

    Google Scholar 

  39. L. Christodoulou, P.A. Parrish, and C.R. Crowe:High Temperature, High Performance Composites, Material Research Society Symposia Proceedings, Material Research Society, Pittsburgh, PA, 1988, vol. 120, pp. 29–34.

    Google Scholar 

  40. J.D. Bryant, S.L. Kampe, P. Sadler, and L. Christodoulou:Metall. Trans. A, 1991, vol. 22A, pp. 2009–19.

    CAS  Google Scholar 

  41. Y. Liu and B.R. Patterson:Scripta Metall. Mater., 1993, 1990, vol. 29(8), pp. 1101–06.

    Article  Google Scholar 

  42. S.L. Kampe, G. Swope, and L. Christodoulou:Intermetallic Matrix Composites, Material Research Society Symposia Proceedings, Material Research Society, Pittsburgh, PA, 1990, vol. 194, pp. 97–103.

    Google Scholar 

  43. A.R.C. Westwood:Metall. Trans. A, 1988, vol. 19A, pp. 749–58.

    CAS  Google Scholar 

  44. L. Christodoulou and J.M. Brupbacher:Mater. Edge, 1990; no. 20, pp. 29-33.

  45. J.M. Brupbacher, L. Christodoulou, and D.C. Nagle: U.S. Patent 4,710,348, Martin Marietta Corp., Bethesda, MD, 1987.

  46. O. Popoola Poola, C. Cordier, P. Pirouz, and A.H. Heuer:Proc. Conf. on Interfaces in Metal-Ceramic Composites, TMS, Warrendale, PA, 1990, pp. 465–73.

    Google Scholar 

  47. J.W. Martin:Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, New York, NY, 1980, p. 44.

    Google Scholar 

  48. D. Larsen, L. Christodoulou, S.L. Kampe, and P. Sadler:Mater. Sci. Eng., 1991, vol. A144, pp. 45–49.

    CAS  Google Scholar 

  49. C. McCullough, J.J. Valencia, CG. Levi, and R. Mehrabian:Acta Metall., 1989, vol. 37 (5), pp. 1321–36.

    Article  CAS  Google Scholar 

  50. M.E. Hyman, C McCullough, J.J. Valencia, CG. Levi, and R. Mehrabian:Metall. Trans. A, 1989, vol. 20A, pp. 1847–59.

    CAS  Google Scholar 

  51. D.E. Larsen, S.L. Kampe, and L. Christodoulou:Intermetallic Matrix Composites, Material Research Society Symposia Proceedings, Material Research Society, Pittsburgh, PA, 1990, vol. 194, pp. 285–92.

    Google Scholar 

  52. Z. Hashin and S. Shtrikman:J. Mech. Phys. Solids, 1963, vol. 11, pp. 127–40.

    Article  Google Scholar 

  53. W.J. Lackey, D.P. Stinton, G.A. Cerny, L.L. Fehrenbacher, and A.C. Schaffhauser:Ceramic Coatings for Heat Engine Materials—Statusand Future Needs, ORNL/TM-8959, Oak Ridge National Laboratory, Oak Ridge, TN, 1989, p. 8.

  54. P.K. Wright, GE, Evendale, OH, private communication, 1990.

  55. J.A. Sekar and R. Trivedi:Proc. Conf. on Solidification of Metal Matrix Composites, TMS, Warrendale, PA, 1990, pp. 39–50.

    Google Scholar 

  56. S. Guillard and H.J. Rack:Mater. Sci. Eng., A183, 1994, pp. 181–94.

    Google Scholar 

  57. S.L. Kampe, J.D. Bryant, and L. Christodoulou:Metall. Trans. A, 1991, vol. 22A, pp. 447–54.

    CAS  Google Scholar 

  58. D.S. Shih and R.A. Amato:Scripta Metall., 1990, vol. 24, pp. 2053–58.

    Article  CAS  Google Scholar 

  59. M. Saqib, G.M. Mehrotra, E. Clevenger, A.G. Jackson, and H.A. Lipsitt:Metall Trans. A, 1991, vol. 22A, pp. 1721–28.

    CAS  Google Scholar 

  60. C.R. Feng, D.J. Michel, and C.R. Crowe:Mater. Sci. Eng. A, 1991, vol. A145, pp. 257–64.

    CAS  Google Scholar 

  61. .J. Blackburn and M.P. Smith: AFML-TR-79-4056, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Dayton, OH, 1979.

  62. W.T. Donlan, W.E. Dowling, and J.E. Allison:Microstructurel Property Relationships in Titanium Aluminides and Alloys, TMS, Warrendale, PA, 1991, pp. 75–88.

    Google Scholar 

  63. W.O. Soboyejo, D.S. Schwartz, and S.M.L. Sastry:Metall. Trans. A, 1992, vol. 23A, pp. 2039–59.

    CAS  Google Scholar 

  64. M. Yamaguchi and Y. Umakoshi,Prog. Mater. Sci., 1990, vol. 34 (1), pp. 1–148.

    Article  CAS  Google Scholar 

  65. U.F. Kochs, A.S. Argon, and M.F. Ashby:Prog. Mater. Sci., 1975, vol. 19, pp. 224–29.

    Google Scholar 

  66. E. Nembach and M. Martin:Acta Metall., 1980, vol. 28, pp. 1069–75.

    Article  CAS  Google Scholar 

  67. D.E. Larsen, D.J. Wheeler, and B. London: Paper presented at 1992 TMS Fall Meeting, Chicago, IL, Nov. 1992.

  68. V.K. Vasudevan, S.A. Court, P. Kurath, and H.L. Fraser:Scripta Metall., 1989, vol. 23, pp. 467–69.

    Article  CAS  Google Scholar 

  69. A.W. Thompson and W.-Y. Chu:Microstructure/Property Relationships in Titanium Aluminides and Alloys, TMS, Warrendale, PA, 1991, pp. 165–77.

    Google Scholar 

  70. S.-C. Huang and M.F.X. Gigliotti: U.S. Patent 4,842,820, General Electric, Schenectady, NY, 1991.

  71. D.J. Wheeler, D.E. Larsen, and B. London: Paper presented at 1992 TMS Fall Meeting, Chicago, IL, Nov. 1992.

  72. S.A. Court, V.K. Vasudevan, and H.L. Fraser:Phil. Mag. A, 1990, vol. 61 (1), pp. 141–58.

    CAS  Google Scholar 

  73. G. Hug, A. Loiseau, and A. Lasalmonie:Phil. Mag. A, 1986, vol. 54, pp. 47–65.

    CAS  Google Scholar 

  74. P.K. Khowash, D.L. Price, and B.R. Cooper:High Temperature Ordered Intermetallics TV, erial Research Society Symposia Proceedings Material Research Society, Pittsburgh, PA, 1991, vol. 213, pp. 31–36.

    Google Scholar 

  75. R.M. Aikin and L. Christodoulou:Scripta Metall. Mater., 1991, vol. 25, pp. 9–14.

    Article  CAS  Google Scholar 

  76. R.M. Aikin:Mater. Sci. Eng. A, 1992, vol. A155, pp. 121–33.

    CAS  Google Scholar 

  77. L. Anand and J. Gurland:Metall. Trans. A, 1976, vol. 7A, pp. 191–97.

    CAS  Google Scholar 

  78. L. Anand and J. Gurland:Acta Metall., 1976, vol. 24, pp. 901–09.

    Article  CAS  Google Scholar 

  79. L.J. Broutman and R.H. Krock:Modern Composite Materials, Addison-Wesley, Reading, MA, 1967, p. 13.

    Google Scholar 

  80. D. Shectman, M.J. Blackburn, and H.A. Lipsitt:Metall. Trans., 1974, vol. 5, pp. 1373–81.

    Article  Google Scholar 

  81. M.F. Ashby:Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  82. M.F. Ashby:Strengthening Methods in Crystals, A. Kelly, ed., Applied Science, London, 1971, pp. 137–92.

    Google Scholar 

  83. P.D. Funkenbusch and T.H. Courtney:Acta Metall., 1985, vol. 33 (5), pp. 913–22.

    Article  CAS  Google Scholar 

  84. T.H. Courtney:Mechanical Behavior of Materials, McGraw-Hill, New York, NY, 1990, p. 173.

    Google Scholar 

  85. F. Appel, P.A. Beaven, and R. Wagner:Acta Metall. Mater., 1993, vol. 41, pp. 1721–32.

    Article  CAS  Google Scholar 

  86. T. Fujiwara, A. Nakamura, H. Hosomi, S.R. Nishitani, Y. Shirai, and M. Yamaguchi:Phil Mag. A, 1990, vol. 61, pp. 591–606.

    CAS  Google Scholar 

  87. D.S. Schwartz and W.O. Soboyejo:Microstructure/Property Relationships in Titanium Aluminides and Alloys, TMS, Warrendale, PA, 1991, pp. 65–74.

    Google Scholar 

  88. H. Deve, A.G. Evans, and D.H. Shih:Acta Metall. Mater., 1992, vol. 40, pp. 1259–65.

    Article  CAS  Google Scholar 

  89. M.J. Marcinkowski and H.A. Lipsitt:Acta Metall., 1962, vol. 10, pp. 95–111.

    Article  CAS  Google Scholar 

  90. D. Hull:Acta Metall., 1961, vol. 9, pp. 191–204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampe, S.L., Sadler, P., Christodoulou, L. et al. Room-Temperature strength and deformation of Tib2-reinforced near-γ titanium aluminides. Metall Mater Trans A 25, 2181–2197 (1994). https://doi.org/10.1007/BF02652319

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652319

Keywords

Navigation