Skip to main content
Log in

Modeling creep deformation of a two-phase TiAI/Ti3Al alloy with a lamellar microstructure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A two-phase TiAl/Ti3Al alloy with a lamellar microstructure has been previously shown to exhibit a lower minimum creep rate than the minimum creep rates of the constituent TiAl and Ti3Al single-phase alloys. Fiducial-line experiments described in the present article demonstrate that the creep rates of the constituent phases within the two-phase TiAl/Ti3Al lamellar alloy tested in compression are more than an order of magnitude lower than the creep rates of single-phase TiAl and Ti3Al alloys tested in compression at the same stress and temperature. Additionally, the fiducial-line experiments show that no interfacial sliding of the phases in the TiAl/Ti3Al lamellar alloy occurs during creep. The lower creep rate of the lamellar alloy is attributed to enhanced hardening of the constituent phases within the lamellar microstructure. A composite-strength model has been formulated to predict the creep rate of the lamellar alloy, taking into account the lower creep rates of the constituent phases within the lamellar micro-structure. Application of the model yields a very good correlation between predicted and experimentally observed minimum creep rates over moderate stress and temperature ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.W. Kim and D.M. Dimiduk:JOM, 1991, vol. 43 (8), pp. 40–7.

    CAS  Google Scholar 

  2. H.A. Lipsitt, D. Shechtman, and R.E. Schafrik:Metall. Trans. A, 1980, vol. 11A, pp. 1369–75.

    CAS  Google Scholar 

  3. S. Mitao, S. Tsuyama, and K. Minakawa:Mater. Sci. Eng., 1991, vol. 143A, pp. 51–62.

    Google Scholar 

  4. M.F. Bartholomeusz, Q. Yang, and J.A. Wert:Scripta Metall. Mater., 1993, vol. 29, pp. 389–94.

    Article  CAS  Google Scholar 

  5. R.S. Polvani, W.-S. Tzeng, and P.R. Strutt:Metall. Trans. A, 1976, vol. 7A, pp. 33–40.

    CAS  Google Scholar 

  6. P.R. Strutt and B.H. Kear: inHigh-Temperature Ordered Intermetallic Alloys, C.C. Koch, C.T. Liu, and N.S. Stoloff, eds., Materials Research Society, Pittsburgh, PA, 1985, pp. 279–92.

    Google Scholar 

  7. M.V. Nathal, J.O. Diaz, and R.V. Miner: inHigh-Temperature Ordered Intermetallic Alloys III, C.T. Liu, A.I. Taub, N.S. Stoloff, and C.C. Koch, eds., Materials Research Society, Pittsburgh, PA, 1985, pp. 269–74.

    Google Scholar 

  8. D. McLean:Prog. Phys., 1966, vol. 29, pp. 1–33.

    Article  CAS  Google Scholar 

  9. J.P. Poirier:Creep of Crystals, Cambridge University Press, Cambridge, United Kingdom, 1985, pp. 103–08.

    Google Scholar 

  10. P.P. Rao and Kris Tangri:Mater. Sci. Eng., 1991, vol. 132A, pp. 49–59.

    Google Scholar 

  11. F. Appel, P.A. Beavon, and R. Wagner:Ada Metall. Mater., 1993, vol. 41, pp. 1721–32.

    Article  CAS  Google Scholar 

  12. V.K. Vasudevan, M.A. Stucke, S.A. Court, and H.L. Fraser:Phil. Mag. Lett., 1989, vol. 59, pp. 299–307.

    CAS  Google Scholar 

  13. S.A. Court, J.P.A. Lofvander, M.H. Loretto, and H.L. Fraser:Phil. Mag., 1990, vol. 61, pp. 109–39.

    CAS  Google Scholar 

  14. J. Weertman:Trans. ASM., 1968, vol. 61, pp. 681–94.

    CAS  Google Scholar 

  15. H. Oikawa: inHigh Temperature Aluminides & Intermetallics, S.H. Wang, C.T. Liu, D.P. Pope, and J.O. Stiegler, eds., TMS, Warrendale, PA, 1989, pp. 353–73.

    Google Scholar 

  16. T. Takahashi, H. Nagai, and H. Oikawa:Mater. Sci. Eng., 1990, vol. 128A, pp. 195–200.

    Google Scholar 

  17. M.F. Bartholomeusz and J.A. Wert:Mater. Char., in press.

  18. M.G. Mendiratta and H.A. Lipsitt:J. Mater. Sci., 1980, vol. 15, pp. 2985–90.

    Article  CAS  Google Scholar 

  19. H. Nagai, T. Takahashi, and H. Oikawa:J. Mater. Sci., 1990, vol. 25, pp. 629–32.

    Article  CAS  Google Scholar 

  20. S.C. Huang and D.S. Shih: inMicrostructure/Property Relationships in Titanium Aluminides and Alloys, Y.W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1990, pp. 105–22.

    Google Scholar 

  21. A. Kelly and K.N. Street:Proc. R. Soc. London A, 1972, vol. 328A, pp. 283–93.

    Google Scholar 

  22. A. Kelly and W.R. Tyson:J. Mech. Phys. Solids, 1966, vol. 14, pp. 177–86.

    Article  CAS  Google Scholar 

  23. I. Miura and H. Honma:J. Jpn. Inst. Met., 1967, vol. 31, pp. 607–10.

    Google Scholar 

  24. A. Kelly and K.N. Street:Proc. Roy. Soc. London A, 1972, vol. 328A, pp. 267–82.

    Google Scholar 

  25. M. McLean: inProc. 5th Int. Conf. on Composite Materials, W.C. Harrigan, J. Strife, and A.K. Dhingra, eds., TMS, Warrendale, PA, 1985, pp. 37–51.

    Google Scholar 

  26. A.F. Johnson:Mech. Phys. Solids, 1977, vol. 25, pp. 117–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Materials Science and Engineering, University of Virginia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartholomeusz, M.F., Wert, J.A. Modeling creep deformation of a two-phase TiAI/Ti3Al alloy with a lamellar microstructure. Metall Mater Trans A 25, 2161–2171 (1994). https://doi.org/10.1007/BF02652317

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652317

Keywords

Navigation